Mathematical Investigations of Nonlinear Free Boundary Problems in Stokes Flow
斯托克斯流中非线性自由边界问题的数学研究
基本信息
- 批准号:9803167
- 负责人:
- 金额:$ 5.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9803167Mathematical Investigation of Nonlinear Free Boundary Problems inStokes FlowInvestigators: Michael Brenner and Darren CrowdyPROJECT SUMMARYThis proposal outlines a mathematical investigation of a class of freeboundary problems for slow viscous (Stokes) fluid regions in both twoand three dimensions. The proposal is motivated by recent results on aremarkable mathematical structure underlying a fundamental problem inthe study of two-dimensional Stokes flow. Crowdy and Tanveer havedevised a new global theoretical approach to the problem of 2D Stokesflow which resulted in the identification of an infinity of conservedquantities associated with a large class of exact solutions for asimply-connected fluid region, and the discovery of the first-knownexact solutions for doubly-connected fluid regions. These significantmathematical results will be developed in various directions. Ofprimary interest is the important and highly non-trivial question ofgeneralization to three-dimensional Stokes flow. Preliminary numericalstudies by Nie and Tanveer have shown that axisymmetric (3D) Stokesbubble exhibits very similar qualitative behavior to itstwo-dimensional analogue (e.g. formation of near-cusps and topologicalchanges). The results on two-dimensional Stokes flow will begeneralized in various directions. Exact solutions in regions ofconnectivity greater than two is of great interest. Moreover,additional physical factors will be studied including electrostatic(electric fields) and thermo-capillary effects.The mathematical problems to be studied are of great physical interestand application. The solutions serve as useful models in the physicalprocess of viscous sintering. Sintering is a term broadly referring tothe consolidation of an assemblage of particles in which the masstransport is driven by surface tension and there exists a hugeliterature on the subject spanning many disciplines from materialsscience to environmental engineering. Understanding such sinteringprocesses is very important, for example, in fiber-optic andopto-electronic technologies. The study of the boundary evolution ofsmall blobs of viscous fluid in the presence of an electric field iscrucial for the understanding of ink-jet printing technologies. Theproject also has potential biotechnological relevance -- cellsstructures and membranes are often modelled as (charged) blobs of veryviscous fluid kept together by surface tension forces on the boundary.This project will provide an understanding of the mathematicsunderlying these important physical models.
研究人员:Michael Brenner和Darren CrowdyPROJECT摘要:本文概述了一类慢粘性(Stokes)流体区域的二维和三维自由边界问题的数学研究。这一提议的动机是最近在研究二维斯托克斯流的一个基本问题的基础上的一个了不起的数学结构的结果。Crowdy和Tanveer设计了一种新的全局理论方法来解决二维Stokesflow问题,从而确定了与单连通流体区域的大量精确解相关的无穷守恒量,并发现了双连通流体区域的第一已知精确解。这些重要的数学结果将向各个方向发展。主要的兴趣是对三维斯托克斯流的推广这一重要而又非常重要的问题。Nie和Tanveer的初步数值研究表明,轴对称(3D) Stokesbubble表现出与其二维类似物非常相似的定性行为(例如,近尖点的形成和拓扑变化)。二维斯托克斯流的结果将在各个方向上推广。在连通性大于2的区域的精确解非常有趣。此外,还将研究其他物理因素,包括静电(电场)和热毛细效应。所研究的数学问题具有很大的物理意义和应用价值。这些解可作为粘性烧结物理过程的有用模型。烧结是一个广义的术语,指的是由表面张力驱动的颗粒组合的固结,从材料科学到环境工程的许多学科都有关于这个主题的大量文献。了解这种烧结过程非常重要,例如在光纤和光电技术中。研究电场作用下粘性流体小块的边界演化对于理解喷墨打印技术至关重要。该项目还具有潜在的生物技术相关性——细胞结构和膜通常被建模为(带电的)非常粘稠的流体团,通过边界上的表面张力保持在一起。这个项目将提供对这些重要物理模型背后的数学的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brenner其他文献
Modelling Spatio-Temporal Comprehension in Situated Human-Robot Dialogue as Reasoning about Intentions and Plans
将情境人机对话中的时空理解建模为意图和计划的推理
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
G. Kruijff;Michael Brenner - 通讯作者:
Michael Brenner
An infantile case of Alexander disease unusual for its MRI features and a GFAP allele carrying both the p.Arg79His mutation and the p.Glu223Gln coding variant
- DOI:
10.1007/s00415-009-0147-4 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:4.600
- 作者:
Maria Teresa Dotti;Rosaria Buccoliero;Andrew Lee;J. Raphael Gorospe;Daniel Flint;Paolo Galluzzi;Silvia Bianchi;Camilla D’Eramo;Sakkubai Naidu;Antonio Federico;Michael Brenner - 通讯作者:
Michael Brenner
A novel glial fibrillary acidic protein mRNA lacking exon 1.
一种缺乏外显子 1 的新型神经胶质原纤维酸性蛋白 mRNA。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Diana Zelenika;Brigitte Grima;Michael Brenner;Bernard Pessac - 通讯作者:
Bernard Pessac
Practical Applications of Homomorphic Encryption
同态加密的实际应用
- DOI:
10.5220/0003969400050014 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michael Brenner;H. Perl;Matthew Smith - 通讯作者:
Matthew Smith
Creating Dynamic Story Plots with Continual Multiagent Planning
- DOI:
10.1609/aaai.v24i1.7567 - 发表时间:
2010-07 - 期刊:
- 影响因子:0
- 作者:
Michael Brenner - 通讯作者:
Michael Brenner
Michael Brenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brenner', 18)}}的其他基金
DMREF: Collaborative Research: Digital Magnetic Handshake Materials, Structures, and Machines
DMREF:合作研究:数字磁握手材料、结构和机器
- 批准号:
1921619 - 财政年份:2019
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Research and Education in Physical Mathematics
物理数学研究与教育
- 批准号:
1715477 - 财政年份:2017
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
REU Site: Team Research in Computational and Applied Mathematics (TRiCAM)
REU 网站:计算与应用数学团队研究 (TRiCAM)
- 批准号:
1460870 - 财政年份:2015
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Research and Education in Physical Mathematics
物理数学研究与教育
- 批准号:
1411694 - 财政年份:2014
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
DMREF: Self Assembly with DNA-Labeled Colloidal Particles and DNA Nanostructures
DMREF:使用 DNA 标记的胶体颗粒和 DNA 纳米结构进行自组装
- 批准号:
1435964 - 财政年份:2014
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Research and Education in Physical Mathematics
物理数学研究与教育
- 批准号:
0907985 - 财政年份:2009
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Research and Education in Physical Mathematics
物理数学研究与教育
- 批准号:
0605031 - 财政年份:2006
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Research and Education in Physical Mathematics
物理数学研究与教育
- 批准号:
0305873 - 财政年份:2003
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
CAREER PROPOSAL IN PHYSICAL MATHEMATICS
物理数学职业建议
- 批准号:
0296056 - 财政年份:2001
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
CAREER PROPOSAL IN PHYSICAL MATHEMATICS
物理数学职业建议
- 批准号:
9733030 - 财政年份:1998
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
相似海外基金
Investigations of Concentrated Salt and Acid Solutions Using Ultrafast Nonlinear Spectroscopy
使用超快非线性光谱研究浓盐和酸溶液
- 批准号:
2319637 - 财政年份:2023
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Nonlinear optics at the nanoscale: theoretical and computational investigations
纳米尺度的非线性光学:理论和计算研究
- 批准号:
RGPIN-2017-06101 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Surface Spectroscopic Investigations into the Molecular Mechanism Governing Cell Membrane Repair
细胞膜修复分子机制的非线性表面光谱研究
- 批准号:
2137997 - 财政年份:2021
- 资助金额:
$ 5.61万 - 项目类别:
Fellowship Award
Nonlinear optics at the nanoscale: theoretical and computational investigations
纳米尺度的非线性光学:理论和计算研究
- 批准号:
RGPIN-2017-06101 - 财政年份:2021
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear optics at the nanoscale: theoretical and computational investigations
纳米尺度的非线性光学:理论和计算研究
- 批准号:
RGPIN-2017-06101 - 财政年份:2020
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear optics at the nanoscale: theoretical and computational investigations
纳米尺度的非线性光学:理论和计算研究
- 批准号:
RGPIN-2017-06101 - 财政年份:2019
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear optics at the nanoscale: theoretical and computational investigations
纳米尺度的非线性光学:理论和计算研究
- 批准号:
RGPIN-2017-06101 - 财政年份:2018
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear optics at the nanoscale: theoretical and computational investigations
纳米尺度的非线性光学:理论和计算研究
- 批准号:
RGPIN-2017-06101 - 财政年份:2017
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Quantum nonlinear optics for experimental investigations of advanced quantum technologies and fundamental physics
用于先进量子技术和基础物理实验研究的量子非线性光学
- 批准号:
342437-2012 - 财政年份:2016
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
Quantum nonlinear optics for experimental investigations of advanced quantum technologies and fundamental physics
用于先进量子技术和基础物理实验研究的量子非线性光学
- 批准号:
429572-2012 - 财政年份:2016
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Accelerator Supplements