Mathematical Theories of the Thermistor Problem
热敏电阻问题的数学理论
基本信息
- 批准号:9803236
- 负责人:
- 金额:$ 5.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will study mathematical models that describe the combined processes of heat conduction and electrical conduction in certain semiconductors. Thermal conductivity and electrical conductivity are assumed to be highly temperature-dependent. Due to the presence of strong degeneracy and quadratic nonlinearities in the partiual differential equations that describe these processes, these physical problems lead to deep and intriguing questions in nonlinear analysis. Part of the mathematical analysis involves the applications of partial regularity and the local description of a solution near a singularity. However, solutions in these processes exhibit rich structures and different structures require different mathematical approaches.How to control temperature in microprocessors is a very important issue in the semiconductor industry. The planned research will use mathematical models to reveal how the temperature in a semiconductor depends on the known data. It is expected that the understanding of these issues can assist engineers and researchers in the design of future products.
首席研究员将研究描述某些半导体中热传导和电传导的组合过程的数学模型。 热导率和电导率被认为是高度依赖于温度的。由于描述这些过程的偏微分方程具有强退化性和二次非线性,这些物理问题在非线性分析中引起了深刻而有趣的问题。 部分数学分析涉及部分正则性的应用和奇点附近解的局部描述。 然而,这些过程中的解决方案呈现出丰富的结构,不同的结构需要不同的数学方法。如何控制温度在微处理器是一个非常重要的问题,在半导体工业。计划中的研究将使用数学模型来揭示半导体中的温度如何取决于已知数据。希望对这些问题的理解能够帮助工程师和研究人员设计未来的产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangsheng Xu其他文献
Asymptotic behaviour of solutions of hyperbolic conservation laws ut + (um)x = 0 as m → ∞ with inconsistent initial values
双曲守恒定律 ut + (um)x = 0 解的渐近行为,当 m → Infini 且初始值不一致时
- DOI:
10.1017/s0308210500023957 - 发表时间:
1989 - 期刊:
- 影响因子:0
- 作者:
Xiangsheng Xu - 通讯作者:
Xiangsheng Xu
Local partial regularity theorems for suitable weak solutions of a class of degenerate systems
一类简并系统的适当弱解的局部偏正则定理
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Xiangsheng Xu - 通讯作者:
Xiangsheng Xu
Maximal monotone operator in non-reflexive Banach space and the application to thin film equation in epitaxial growth on vicinal surface
非自反Banach空间中的最大单调算子及其在邻面外延生长薄膜方程中的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yuan Gao;Jian‐Guo Liu;X. Lu;Xiangsheng Xu - 通讯作者:
Xiangsheng Xu
Existence and uniqueness for the nonstationary problem of the electrical heating of a conductor due to the Joule-Thomson effect
焦耳-汤姆逊效应导体电加热非平稳问题的存在性和唯一性
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Xiangsheng Xu - 通讯作者:
Xiangsheng Xu
A practical synthesis of Cbz protected <em>(1R,2R)</em> and <em>(1S,2S)</em> 2-hydroxy-cyclobutylamines
- DOI:
10.1016/j.tetlet.2024.155391 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Can Jin;Yilin Wang;Xiangsheng Xu;Xiaoqing Li - 通讯作者:
Xiaoqing Li
Xiangsheng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangsheng Xu', 18)}}的其他基金
Mathematical Sciences: On a Class of Degenerate Systems Arising from the Electrical Heating of Conductors
数学科学:关于由导体电加热引起的一类简并系统
- 批准号:
9696141 - 财政年份:1996
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Mathematical Sciences: On a Class of Degenerate Systems Arising from the Electrical Heating of Conductors
数学科学:关于由导体电加热引起的一类简并系统
- 批准号:
9424448 - 财政年份:1995
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Mathematiical Sciences: Mathematical Study of Nonlinear Materials
数学科学:非线性材料的数学研究
- 批准号:
9314082 - 财政年份:1994
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Systems of Degenerate Partial Differential Equations of Ellipitic-Parabolic Type
数学科学:椭圆抛物型简并偏微分方程组
- 批准号:
9101382 - 财政年份:1991
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
相似海外基金
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 5.42万 - 项目类别:
Research Grant
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
- 批准号:
24K00237 - 财政年份:2024
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
- 批准号:
2349052 - 财政年份:2024
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
- 批准号:
2338690 - 财政年份:2024
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Fellowship
RAPID: Antecedents and Consequences of Disaster-Related Conspiracy Theories
RAPID:灾难相关阴谋论的前因和后果
- 批准号:
2326644 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Testing alternative theories of gravity in strong gravitational field by searching for gravitational-wave polarization from compact binary coalescences
通过从致密双星聚结中寻找引力波偏振来测试强引力场中的替代引力理论
- 批准号:
22KJ1650 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum Simulation of Non-Equilibrium Processes in Quantum Field Theories
量子场论中非平衡过程的量子模拟
- 批准号:
22KJ0957 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows