Fundamental and Applied Problems in Granular Flow

颗粒流的基本和应用问题

基本信息

  • 批准号:
    9803305
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-15 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

Fundamental and Applied Problems in Granular Flow David Schaeffer/ Michael Shearer This project focuses on three aspects of the flow of granular materials: an investigation of fluctuations, flows and stresses in industrial silos, and liquefaction of soils. The various issues will be addressed using an interdisciplinary approach involving analysis, computation and experiment. The latter two parts will also involve input from industrial and geotechnical experts. Details of each subproject follow. Subproject 1, fluctuations in sheared granular materials: Recent work has shown that fluctuations of forces and to some extent velocities can be very large for moderate scale systems. The experimental part of this project will provide additional quantitative characterizations of these fluctuations for modest scale slowly sheared systems. In addition, new experiments will be constructed of a Couette type that will probe force fluctuations on larger length and time scales. These experiments will be integrated into ongoing work to model force fluctuations by lattice type models, and computations using novel hybrid molecular dynamics and finite element codes. Subproject 2, flow in industrial silos: In collaboration with engineers at the firm Jenike and Johanson, Inc. the co-PI's of this project will analyze flows in a spatial region that corresponds to the shape of a typical hopper. This analysis will be based both on Coulomb materials and on critical state soil mechanics (CSSM). Some of the aspects under study will include an investigation of the relationship between CSSM and Coulomb models, shock and rarefaction wave solutions, boundary value problems for hopper flow, and stability of such solutions. An important application is the design of flow corrective devices. Subproject 3, liquefaction of soils: This phenomenon corresponds to the abrupt loss of load-bearing capacity of a loose, water-saturated soil, possibly leading to a massive landslide. Real world s oil failure/liquefaction will be investigated in collaboration with G. Gudehus and his associates. This project will combine experiments, mathematical analysis, computer simulation and industrial/geotechnical expertise to better understand the flow of granular materials. The area of study is of considerable importance to technical processes involving all types of granular materials, including but by no means limited to chemical process industries, and to the handling of coal, ores, food grains, and pharmaceuticals. Many aspects of the above processes are not fully understood, leading in some cases to enormous financial losses. Also under consideration are geotechnical issues such as the stability of embankments, as well as the stability of soils under earthquake conditions. The project will involve the application of existing theories for granular materials to such fundamental problems as flows in hoppers and stability of soils in landfills. New models will be developed in order to take into account some important aspects of granular flows such as fluctuations of forces. Recent experiments in this lab have shown that fluctuations, which are not accounted for in existing models, can be very strong and may well be necessary to provide safe and reliable design criteria for industrial devices involving granular flows. The models will be tightly linked to the experimental data, on the one hand, and, on the other hand, will be the basis of computer solutions for relevant technical problems.
颗粒流的基本与应用问题 该项目侧重于颗粒材料流动的三个方面:工业筒仓中的波动,流动和应力的调查,以及土壤的液化。 各种问题将使用涉及分析,计算和实验的跨学科方法来解决。 后两部分还将涉及工业和岩土专家的投入。 每个次级项目的细节如下。 子项目1,剪切颗粒材料中的波动:最近的工作表明,对于中等尺度的系统,力的波动和在某种程度上速度的波动可能非常大。 这个项目的实验部分将提供额外的定量表征这些波动的适度规模缓慢剪切系统。 此外,新的实验将建造一个库埃特类型,将探测更大的长度和时间尺度上的力波动。 这些实验将被整合到正在进行的工作中,通过晶格型模型来模拟力的波动,并使用新的混合分子动力学和有限元代码进行计算。子项目2,工业筒仓中的流动:与Jenike和Johanson公司的工程师合作。这个项目的共同研究者将分析与典型漏斗形状相对应的空间区域中的流动。 该分析将基于库仑材料和临界状态土壤力学(CSSM)。 正在研究的一些方面将包括CSSM和库仑模型,冲击和稀疏波的解决方案,料斗流的边值问题,和稳定性等解决方案之间的关系的调查。 一个重要的应用是流量校正装置的设计。 分项目3,土壤液化:这种现象相当于松散的、水饱和的土壤突然丧失承载能力,可能导致大规模滑坡。将与G.古德胡斯和他的同伙。 该项目将结合联合收割机实验、数学分析、计算机模拟和工业/岩土专业知识,以更好地了解颗粒材料的流动。 该研究领域对涉及所有类型颗粒材料的技术过程具有相当重要的意义,包括但不限于化学加工工业,以及煤,矿石,粮食和药品的处理。 上述过程的许多方面没有得到充分理解,在某些情况下导致巨大的经济损失。此外,还考虑了岩土工程问题,如地基的稳定性,以及地震条件下土壤的稳定性。 该项目将涉及应用现有的颗粒材料理论,如漏斗中的流动和垃圾填埋场土壤的稳定性等基本问题。 将开发新的模型,以考虑到颗粒流的一些重要方面,如波动的力量。该实验室最近的实验表明,现有模型中没有考虑的波动可能非常强烈,并且很可能是必要的,以便为涉及颗粒流的工业设备提供安全可靠的设计标准。这些模型一方面将与实验数据紧密联系在一起,另一方面也将成为相关技术问题的计算机解决方案的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Schaeffer其他文献

Pontage artério-veineux débouchant dans la veine axillaire proximale
近端腋静脉的动静脉连接
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Theodore H. Teruya;David Schaeffer;Ahmed M. Abou;C. Bianchi
  • 通讯作者:
    C. Bianchi
Inflammatory bowel disease uncovered in fecal immunochemical test positive patients in a Canadian provincial colon cancer screening program
加拿大省级结肠癌筛查项目中粪便免疫化学试验阳性患者中发现炎症性肠病
  • DOI:
    10.1038/s41598-024-73817-7
  • 发表时间:
    2024-10-03
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Harjot Bedi;Jennifer Telford;Robert Penner;Ken Atkinson;Zamil Karim;Holly Wiesinger;Nancy Fu;Kevin Rioux;David Schaeffer;Baljinder Salh MBChB
  • 通讯作者:
    Baljinder Salh MBChB
B. Hannon and M. Ruth (Authors), Modeling Dynamic Biological Systems
Rétinopathie du prématuré : étude rétrospective sur une période de dix ans au CHU de Strasbourg * * * Travail présenté en communication orale aux 4 es Journées francophones de recherche en néonatologie, 10–12 décembre 1998, Strasbourg.
1998 年,斯特拉斯堡。
  • DOI:
    10.1016/s0929-693x(01)00792-8
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    C. Gaugler;J. Beladdale;D. Astruc;David Schaeffer;L. Donato;C. Speeg;U. Simeoni;J. Messer
  • 通讯作者:
    J. Messer
Sa1654 - Gdf15 Mrna Expression is Enriched in Esophageal Adenocarcinoma Patients Presenting with a Smad4 Somatic Variation
  • DOI:
    10.1016/s0016-5085(18)31478-1
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daljeet Chahal;Steven Pi;Murat Kirca;David Schaeffer;Fergal Donnellan;Robert A. Enns;Dermot Kelleher;Shane Duggan
  • 通讯作者:
    Shane Duggan

David Schaeffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Schaeffer', 18)}}的其他基金

FRG-Collaborative Research: Physical, Mathematical, and Engineering Problems in Slow Granular Flow
FRG 合作研究:慢颗粒流中的物理、数学和工程问题
  • 批准号:
    0244492
  • 财政年份:
    2003
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Physical, Mathematical, and Engineering Problems in Slow Granular Flow
合作提案:慢颗粒流中的物理、数学和工程问题
  • 批准号:
    0204677
  • 财政年份:
    2002
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity
数学科学:动态塑性的多维问题
  • 批准号:
    9504577
  • 财政年份:
    1995
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Multidimensional Problems In Dynamic Plasticity
动态塑性中的多维问题
  • 批准号:
    9201034
  • 财政年份:
    1992
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Multidimensional Dynamic Problems in Plasticity
塑性中的多维动态问题
  • 批准号:
    8804592
  • 财政年份:
    1989
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations of Granular Flow and Riemann Problems for Nonstrictly Hyperbolic Equations
数学科学:粒流偏微分方程和非严格双曲方程的黎曼问题
  • 批准号:
    8604141
  • 财政年份:
    1986
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations in Granular Flow and in Liquid Phase Epitaxy
数学科学:颗粒流和液相外延中的偏微分方程
  • 批准号:
    8401591
  • 财政年份:
    1984
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Perturbed Bifurcation and Singularity Theory (Mathematics)
摄动分岔和奇点理论(数学)
  • 批准号:
    8201297
  • 财政年份:
    1982
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Perturbed Bifurcation and Singularity Theory
摄动分岔和奇点理论
  • 批准号:
    7902010
  • 财政年份:
    1979
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2022-02988
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
REU Site: CAAR: Combinatorics, Algorithms, and AI Applied to Real Problems
REU 网站:CAAR:组合学、算法和人工智能应用于实际问题
  • 批准号:
    2150382
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2021
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2020
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
Applied Inverse Problems Conference 2019
2019年应用反问题会议
  • 批准号:
    1856116
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Applied Analysis of solutions to boundary value problems for evolution equations
演化方程边值问题解的应用分析
  • 批准号:
    2593211
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Studentship
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
REU Site: CAAR: Combinatorics and Algorithms Applied to Real Problems
REU 网站:CAAR:组合数学和算法应用于实际问题
  • 批准号:
    1852352
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了