Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
基本信息
- 批准号:2307638
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns the modelling of fluid motion as motivated by applications of dielectric fluids in microfluidic devices, the combustion and motion of flame fronts, and waves in water. The emphasis is in understanding for how long the mathematical models used to study such phenomena remain valid and predictive, in various physical regimes. For dielectric fluids, the focus is on situations where the density of electrical charge changes rapidly over small regions. For combustion and flame fronts, the aim is to study a hierarchy of mathematical models and determine how well the simpler models serve to approximate behavior in the more complicated models. While for water waves, the goal is to consider how wavetrains with different frequencies interact, or how wavetrains interact with certain kinds of bottom topography. The project provides research training opportunities for graduate students. The project will analyze the Melcher-Taylor leaky dielectric model, with the goal of establishing local well-posedness theory, study a mechanism for shock formation via analytical and numerical approaches, and consider global existence for the Kuramoto-Sivashinsky equation in more than one spatial dimension. Validation theorems relating the Kuramoto-Sivashinsky equation, coordinate-free models of flame fronts, and hydrodynamic flame models will be also investigated. Furthermore, the investigator will establish local well-posedness for water waves with spatially quasiperiodic initial data, and analyze related models, such as the Benjamin-Ono equation or the Euler equations for interfacial flows, in the spatially quasiperiodic setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及流体运动的建模,其动机是介电流体在微流体设备中的应用,火焰前锋的燃烧和运动以及水中的波浪。重点是了解用于研究这种现象的数学模型在各种物理状态下保持有效性和预测性的时间。 对于介电流体,重点是电荷密度在小区域内迅速变化的情况。 对于燃烧和火焰前锋,目的是研究数学模型的层次结构,并确定简单模型在更复杂的模型中的近似行为。 而对于水波,目标是考虑不同频率的波列如何相互作用,或者波列如何与某些类型的底部地形相互作用。该项目为研究生提供研究培训机会。该项目将分析Melcher-Taylor漏电介质模型,目标是建立局部适定性理论,通过分析和数值方法研究激波形成机制,并考虑Kuramoto-Sivashinsky方程在多个空间维度上的整体存在性。 验证定理有关的Kuramoto-Sivashinsky方程,坐标自由模型的火焰前锋,和流体动力学火焰模型也将进行研究。 此外,研究者还将利用空间准周期的初始数据建立水波的局部适定性,并分析空间准周期设置中的相关模型,如Benjamin-Ono方程或界面流的Euler方程。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ambrose其他文献
The impact of person–environment–occupation transactions on joint attention in children with autism spectrum disorder: A scoping review
人-环境-职业交互对自闭症谱系障碍儿童共同注意力的影响:范围界定审查
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
David Ambrose;Diane E MacKenzie;Parisa Ghanouni - 通讯作者:
Parisa Ghanouni
Identification, recovery, and impact of ghost fishing gear in the Mullica River-Great Bay Estuary (New Jersey, USA): Stakeholder-driven restoration for smaller-scale systems
- DOI:
10.1016/j.marpolbul.2018.10.058 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Mark Sullivan;Steven Evert;Peter Straub;Melanie Reding;Nathan Robinson;Elizabeth Zimmermann;David Ambrose - 通讯作者:
David Ambrose
David Ambrose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ambrose', 18)}}的其他基金
Conference: Second Drexel Waves Workshop
会议:第二届德雷塞尔波浪研讨会
- 批准号:
2247694 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Partial Differential Equation Methods for Mean Field Games
平均场博弈的偏微分方程方法
- 批准号:
1907684 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
2016 Gene Golub SIAM Summer School at Drexel University
2016年德雷塞尔大学Gene Golub SIAM暑期学校
- 批准号:
1613965 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Dispersive PDE and Interfacial Fluid Dynamics
色散偏微分方程和界面流体动力学
- 批准号:
1008387 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
- 批准号:
1016267 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Long-Time Behavior in Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的长期行为
- 批准号:
0926378 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Long-Time Behavior in Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的长期行为
- 批准号:
0707807 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Analytical and Computational Approaches to Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的分析和计算方法
- 批准号:
0610898 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Analytical and Computational Approaches to Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的分析和计算方法
- 批准号:
0406130 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Well-posedness of a model for the dynamics of fluids with the moving contact line
具有移动接触线的流体动力学模型的适定性
- 批准号:
21K13826 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for the equation on electrohydrodynamics
电流体动力学方程的适定性
- 批准号:
20K14350 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for higher order dispersive equations and their symmetric structure
高阶色散方程及其对称结构的适定性
- 批准号:
20J12750 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Well-posedness and blow-up criterion for the magnetohydrodynamics system
磁流体动力学系统的适定性和爆炸准则
- 批准号:
19J11320 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows