Pluripotential Theory, Hulls and Foliations
多能理论、船体和叶状结构
基本信息
- 批准号:125787714
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical potential theory was built in the first part of the last century and its development was motivated mainly (but not only) by interests of electro-physics. Pluripotential theory is much younger and its basic results were obtained in 70’s - 80’s in the fundamental works of Bedford, Taylor, Sadullaev and others. Interest to this area and its importance are determined both by the needs of complex analysis and by applications to other fields, e.g. to dynamical systems. While many fundamental results of this theory are already well understood, we will address some important open problems concerning the structure of pluripolar sets and properties of the pluricomplex Green function. A second part of the project is devoted to the study of polynomial and rational hulls which appear naturally in the classical problem of polynomial and rational approximation. Despite the importance of these notions, the structure of polynomial and rational hulls is far from being understood even in the case of compact sets in Cn and is basically not understood at all for unbounded sets. Financial support for this project is aimed at fostering international collaboration, exchange of ideas, and especially (and foremost) at promoting young mathematicians.
经典势能理论建立于上个世纪的上半叶,它的发展主要(但不仅仅)是由电物理学的兴趣推动的。多能理论较年轻,其基本结果是在70 - 80年代由贝德福德、泰勒、萨杜拉耶夫等人的基础工作中得到的。对这一领域的兴趣及其重要性取决于复分析的需要和在其他领域的应用,例如动力系统。虽然这个理论的许多基本结果已经很好地理解,我们将解决一些重要的开放问题的结构的pluripolar集和性质的pluicomplex绿色函数。该项目的第二部分是专门研究自然出现在多项式和有理逼近的经典问题的多项式和有理外壳。尽管这些概念很重要,但多项式和有理壳的结构甚至在Cn中的紧集的情况下也远未被理解,并且对于无界集基本上根本不被理解。对该项目的财政支持旨在促进国际合作,交流思想,特别是(最重要的)促进年轻数学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Nikolay Shcherbina其他文献
Professor Dr. Nikolay Shcherbina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant