Investigation of the Magnetic Anistropy and Magnetic Phase Transition using Stepped Surfaces

使用阶梯表面研究磁各向异性和磁相变

基本信息

  • 批准号:
    9805222
  • 负责人:
  • 金额:
    $ 22.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-06-15 至 2001-05-31
  • 项目状态:
    已结题

项目摘要

Qiu 9805222 This is a fundamental research project in the field of magnetism. The research is focused on the properties of artificially structured thin magnetic films. The objective is an understanding of the role of lattice symmetry-breaking on the magnetic anisotropy in these materials. The magnetic anisotropy is a major determinant of the magnetic properties of the materials, particularly there properties as candidates for magnetic storage media. Nanometer-sized atomic steps on a controlled surface will be created to break the four-fold rotation symmetry to induce a uniaxial magnetic anisotropy within the film plane. This step- induced magnetic anisotropy and its effect on the two-dimensional (2D) magnetic phase transition will be investigated systematically as a function of the step-density. A novel aspect of the project is to employ a curved substrate as a possible means of controlling the step-density in a continuous way. All samples will be grown by Molecular Beam Epitaxy (MBE) and characterized by Reflection High-Energy Electron Diffraction (RHEED), Low-Energy Electron Diffraction (LEED), Auger Electron spectroscopy (AES) and Scanning Tunneling Microscopy (STM). The magnetic properties of the films will be measured in situ by Surface Magneto-Optic Kerr Effect (SMOKE) technique. %%% This is a fundamental research project in the field of magnetism. Rapid development in the information storage technology demands an understanding of the magnetic behavior of materials at the atomic scale. The goal of this proposal is to gain a deeper understanding on how the magnetic anisotropy of a magnet will be affected by limiting the size of the magnetic at the atomic scale. To realize this goal, well-defined atomic steps will be used to break the rotation symmetry of the continuous surface. The step induced magnetic anisotropy and its effect on the 2D magnetic pha se transition will then be systematically investigated as a function of the step-density. State-of-the-art techniques such as the Molecular Beam Epitaxy (MBE) and Scanning Tunneling Microscopy (STM) will be applied to this project to fabricate and characterize the thin films at the atomic scale. Success of this project will be important not only to the understanding of two-dimensional magnetism, but also to the development of new magnetic devices for practical applications. ***
这是一项磁学领域的基础研究项目。本文主要研究了人工结构磁性薄膜的性能。目的是了解晶格对称破缺对这些材料磁各向异性的作用。磁性各向异性是材料磁性的主要决定因素,特别是作为磁性存储介质的候选材料。在受控表面上,纳米大小的原子台阶将被创建,以打破四重旋转对称,从而在薄膜平面内诱导单轴磁各向异性。这种步进诱导的磁各向异性及其对二维磁相变的影响将作为步进密度的函数进行系统的研究。该项目的一个新颖方面是采用弯曲基板作为连续控制步长密度的可能手段。所有样品将通过分子束外延(MBE)生长,并通过反射高能电子衍射(RHEED),低能电子衍射(LEED),俄歇电子能谱(AES)和扫描隧道显微镜(STM)进行表征。利用表面磁光克尔效应(SMOKE)技术原位测量薄膜的磁性能。这是磁学领域的一项基础研究项目。随着信息存储技术的飞速发展,需要在原子尺度上理解材料的磁性行为。本提案的目标是通过在原子尺度上限制磁体的大小来更深入地了解磁体的磁各向异性将如何受到影响。为了实现这一目标,将使用定义良好的原子步骤来打破连续表面的旋转对称性。然后系统地研究了步进诱导磁各向异性及其对二维磁相变的影响,并将其作为步进密度的函数。最先进的技术,如分子束外延(MBE)和扫描隧道显微镜(STM)将应用于该项目,以在原子尺度上制造和表征薄膜。该项目的成功不仅对二维磁学的理解具有重要意义,而且对开发实际应用的新型磁性器件也具有重要意义。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zi Qiu其他文献

Zi Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zi Qiu', 18)}}的其他基金

Investigation of epitaxially grown artificial magnetic Skyrmions and Merons
外延生长的人造磁性斯格明子和梅龙的研究
  • 批准号:
    1504568
  • 财政年份:
    2015
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Standard Grant
Materials World Network: A Study of Spin Dynamics in Fe/CoO/MgO(001) and Fe/NiO/MgO(001) Using Time-Resolved and Element-Specific XMCD and XMLD
材料世界网络:使用时间分辨和元素特定的 XMCD 和 XMLD 研究 Fe/CoO/MgO(001) 和 Fe/NiO/MgO(001) 中的自旋动力学
  • 批准号:
    1210167
  • 财政年份:
    2012
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Continuing Grant
Understanding and Tailoring Magnetic Interactions at the Interfaces of Magnetic Nanostructures
理解和定制磁性纳米结构界面的磁相互作用
  • 批准号:
    0803305
  • 财政年份:
    2008
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Continuing Grant
Investigation of Low Dimensional Magnetic Nanostructures
低维磁性纳米结构的研究
  • 批准号:
    0405259
  • 财政年份:
    2004
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Continuing Grant
Magnetic and Electronic Properties of Magnetic Nanostructures
磁性纳米结构的磁性和电子特性
  • 批准号:
    0110034
  • 财政年份:
    2001
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Standard Grant

相似海外基金

Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Standard Grant
A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
  • 批准号:
    LE240100050
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Magnetoreception in migratory insects: the magnetic compass and the magnetic map in European migratory Lepidoptera
迁徙昆虫的磁感受:欧洲迁徙鳞翅目的磁罗盘和磁图
  • 批准号:
    EP/Y036239/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Fellowship
SUPer-REsolution non-invasive Muscle measurements with miniaturised magnetIc SEnsors (SUPREMISE)
使用微型磁性传感器 (SUPREMISE) 进行超分辨率非侵入性肌肉测量
  • 批准号:
    EP/X031950/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Fellowship
InTarget: An intelligent signature for magnetic control
InTarget:磁力控制的智能签名
  • 批准号:
    EP/X039056/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Research Grant
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
  • 批准号:
    23K26612
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Standard Grant
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Continuing Grant
Ultra-low noise magnetic environments
超低噪声磁场环境
  • 批准号:
    ST/Y509978/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Research Grant
Mathematics for future magnetic devices
未来磁性设备的数学
  • 批准号:
    DP240100781
  • 财政年份:
    2024
  • 资助金额:
    $ 22.65万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了