Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
基本信息
- 批准号:2343606
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As the increasing pervasiveness of computers throughout society has led to drastic increases in the energy consumed by computers, there is a strong need to improve the energy efficiency of computers. In addition to minimizing the economic and environmental costs resulting from computer energy consumption, enhancing the energy efficiency of computers will also allow for increased computing capabilities with beneficial impacts throughout society. This project will therefore design and experimentally demonstrate computing systems with extreme energy efficiency, both for high-performance computing and for artificial intelligence. This extreme energy efficiency will be achieved by leveraging magnetic skyrmions, which are magnetic quasiparticles that have been predicted to be suitable for energy-efficient conventional computing in the reversible computing paradigm as well as for energy-efficient artificial intelligence through the reservoir computing paradigm. This project will significantly advance the development of computers with extreme energy efficiency, thereby reducing environmental harm, facilitating economic development, and enabling revolutionary computing applications that require minimal power dissipation. This project will also have beneficial impacts on workforce development through the inclusion of undergraduate research participants and the vertical training of graduate students from devices to systems.This project will design and experimentally demonstrate reversible and reservoir computers with magnetic skyrmions. Magnetic skyrmions are swirls of magnetic spin texture that are energy-protected once created. They are tunable in size, can operate at room temperature, and have dynamical response to current, voltage, and field, making them a good choice for use in future computing paradigms. Based on preliminary designs and simulations of the PIs on the efficient use of skyrmions in reversible and reservoir computing, this project has four main objectives. Firstly, skyrmion reversible computer co-design will be carried out to efficiently drive the skyrmions, to determine optimal parameters, and to develop a roadmap for the future of skyrmion reversible computing. Secondly, skyrmion reversible computer fabrication will be carried out to demonstrate and analyze skyrmion stability, voltage-driven skyrmion propagation, skyrmion interactions mediated by the skyrmion-Hall effect, and reversible skyrmion logic gates. Thirdly, skyrmion reservoir computing co-design will be carried out to maximize the reservoir expressivity and energy efficiency, to determine optimal parameters, and to develop a roadmap for the future of skyrmion reservoir computing. And fourthly, skyrmion reservoir computer fabrication will be carried out to measure multi-skyrmion interactions, to control repeatability through pinning sites, and to demonstrate and characterize skyrmion reservoir computers. This project will advance the science of thin film magnetism, improve understanding of the dynamics of magnetic nanostructures, develop new device designs and fabrication methods for skyrmion-based devices, and develop and implement circuits and systems to leverage those dynamics. This project will thus advance knowledge in materials, devices, and computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着计算机在整个社会中的日益普及,导致计算机消耗的能量急剧增加,迫切需要提高计算机的能量效率。除了最大限度地减少计算机能源消耗造成的经济和环境成本外,提高计算机的能源效率还将提高计算能力,对整个社会产生有益的影响。因此,该项目将设计和实验演示具有极高能效的计算系统,用于高性能计算和人工智能。这种极端的能源效率将通过利用磁skyrmions来实现,磁skyrmions是磁性准粒子,已被预测适用于可逆计算范式中的节能传统计算以及通过水库计算范式的节能人工智能。该项目将大大推动具有极高能效的计算机的开发,从而减少环境危害,促进经济发展,并实现需要最小功耗的革命性计算应用。该项目还将通过纳入本科生研究参与者和研究生从设备到系统的垂直培训对劳动力发展产生有益的影响。该项目将设计和实验演示具有磁性skyrmions的可逆和水库计算机。磁性Skyrmions是磁性旋转纹理的漩涡,一旦创建就受到能量保护。它们的尺寸可调,可以在室温下工作,并且对电流,电压和场具有动态响应,使它们成为未来计算范例的良好选择。基于在可逆和水库计算中有效使用skyrmions的PI的初步设计和模拟,该项目有四个主要目标。首先,将进行Skyrmion可逆计算机协同设计,以有效地驱动Skyrmion,确定最佳参数,并为Skyrmion可逆计算的未来制定路线图。其次,skyrmion可逆计算机制造将进行演示和分析skyrmion稳定性,电压驱动的skyrmion传播,skyrmion-Hall效应介导的skyrmion相互作用,和可逆skyrmion逻辑门。第三,将进行skyrmion油藏计算协同设计,以最大限度地提高油藏表现力和能源效率,确定最佳参数,并为skyrmion油藏计算的未来制定路线图。此外,将进行skyrmion水库计算机制造,以测量多skyrmion相互作用,通过钉扎位点控制可重复性,并展示和表征skyrmion水库计算机。该项目将推进薄膜磁性科学,提高对磁性纳米结构动力学的理解,为基于skyrmion的设备开发新的设备设计和制造方法,并开发和实施电路和系统以利用这些动力学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Anne Incorvia其他文献
Jean Anne Incorvia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean Anne Incorvia', 18)}}的其他基金
FET: Small: Hybrid Electrical, Ionic, and Biocompatible Artificial Synaptic Transistors
FET:小型:混合电气、离子和生物相容性人工突触晶体管
- 批准号:
2246855 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: 2D Ambipolar Machine Learning & Logical Computing Systems
合作研究:2D 双极机器学习
- 批准号:
2154285 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006753 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Capturing Biological Behavior in Three-Terminal Magnetic Tunnel Junction Synapses and Neurons for Fully Spintronic Neuromorphic Computing
职业:捕捉三端磁隧道连接突触和神经元的生物行为,以实现全自旋电子神经形态计算
- 批准号:
1940788 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FET: Small: Collaborative Research: Integrated Spintronic Synapses and Neurons for Neuromorphic Computing Circuits - I(SNC)^2
FET:小型:协作研究:用于神经形态计算电路的集成自旋电子突触和神经元 - I(SNC)^2
- 批准号:
1910997 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
磁—热力驱动下智能材料可逆可重新编程变形及交互协同的研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于光控蛋白质笼的可逆多酶复合物仿生构建及多酶协同催化机制研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
可逆转肿瘤微环境纳米体系的构建及其抗肿瘤协同治疗研究
- 批准号:52003210
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于多种可逆相互作用构建水性皮革自修复涂饰材料及其协同修复机理、调控机制研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
协同脉冲电场增强不可逆电穿孔消融疗效的基础研究
- 批准号:51807016
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
介孔SiO2负载过渡金属化合物多尺度结构协同增韧增强聚苯并噁嗪及其机理研究
- 批准号:51773185
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
多点接枝协同可逆共价交联结构聚合物弹性体合成与性能研究
- 批准号:51673156
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
高温电气转化池中介尺度结构和过程耦合机理的研究
- 批准号:91634102
- 批准年份:2016
- 资助金额:67.0 万元
- 项目类别:重大研究计划
新型温度响应型智能蠕虫状胶束体系构筑的相化学和热化学研究
- 批准号:21473084
- 批准年份:2014
- 资助金额:83.0 万元
- 项目类别:面上项目
分子内与分子间协同作用型红绿光双发射ECL染料标记物研究
- 批准号:21272030
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
- 批准号:
2208840 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
- 批准号:
2208972 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Low-Energy Tandem Process for Fractionation and Reversible Preservation of Lignocellulose Using Multifunctional Aldehyde Sulfonic Acids
合作研究:使用多功能醛磺酸对木质纤维素进行分馏和可逆保存的低能量串联工艺
- 批准号:
2241487 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Low-Energy Tandem Process for Fractionation and Reversible Preservation of Lignocellulose Using Multifunctional Aldehyde Sulfonic Acids
合作研究:使用多功能醛磺酸对木质纤维素进行分馏和可逆保存的低能量串联工艺
- 批准号:
2027104 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
- 批准号:
2038366 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
- 批准号:
2038381 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Low-Energy Tandem Process for Fractionation and Reversible Preservation of Lignocellulose Using Multifunctional Aldehyde Sulfonic Acids
合作研究:使用多功能醛磺酸对木质纤维素进行分馏和可逆保存的低能量串联工艺
- 批准号:
2027125 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Fatigue Crack Formation and Growth in the Presence of Reversible Martensitic Transformation in High Temperature Shape Memory Alloys
合作研究:高温形状记忆合金中存在可逆马氏体相变时疲劳裂纹的形成和扩展
- 批准号:
1917367 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Fatigue Crack Formation and Growth in the Presence of Reversible Martensitic Transformation in High Temperature Shape Memory Alloys
合作研究:高温形状记忆合金中存在可逆马氏体相变时疲劳裂纹的形成和扩展
- 批准号:
1917441 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond
EAGER:协作研究:用于先进锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层
- 批准号:
1748279 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant