POWRE: Dynamical MCMC Methods With Applications to Continuous Time Differential Equation Models
POWRE:动态 MCMC 方法及其在连续时间微分方程模型中的应用
基本信息
- 批准号:9805598
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2000-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9805598 Stramer Many physical systems are described by continuous-time models (diffusions) which incorporate the variability and randomness that occurs in the real world. The PI will carry out research on two different aspects of such systems: the first enables the use of diffusions to give more efficient computing methods in simulation, and the second leads to better inference of the properties of systems. Part I: Development of new Markov Chain Monte Carlo (MCMC) algorithms for efficient computation of a given high-dimensional density pi which is known up to a factor of proportionality. These new algorithms will be based on multi-dimensional diffusion approximations. The basic idea is to find, for a given probability density pi, a class of diffusion processes (continuous-time, continuous sample-path Markov chains) which have pi as an equilibrium distribution. It is expected that the proposed new MCMC algorithms will speed up simulations of a broad class of distributions pi. Part II: Contribution to statistical inference in non-linear continuous time modeling. It is often appropriate to model the time evolution of dynamic systems by using continuous time stochastic processes whose dynamics are characterized by stochastic differential equations. It is proposed to employ a Bayesian approach for model estimation based on MCMC methods. New simulation techniques for estimating the posterior distribution for a broad class of non-linear Continuous time models will be studied. The existing estimation methods in the literature depend on the length of the interval between two observations and hence Metropolis sub-algorithms for augmenting the data set will be studied. This research is expected to provide a new approach for inference in a broad class of continuous time models. This POWRE project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
9805598 Stramer许多物理系统都是由连续时间模型(扩散)描述的,它包含了真实的世界中发生的可变性和随机性。 PI将对此类系统的两个不同方面进行研究:第一个方面使扩散的使用能够在模拟中提供更有效的计算方法,第二个方面导致更好地推断系统的属性。 第一部分:开发新的马尔可夫链蒙特卡罗(MCMC)算法,用于有效计算已知比例因子的给定高维密度pi。 这些新的算法将基于多维扩散近似。 其基本思想是,对于给定的概率密度pi,找到一类扩散过程(连续时间,连续样本路径马尔可夫链),其中pi作为平衡分布。 预计所提出的新MCMC算法将加快对广泛的一类分布Pi的模拟。 第二部分:对非线性连续时间建模中统计推断的贡献。 用连续时间随机过程来模拟动态系统的时间演化往往是合适的,其动力学特征是随机微分方程。 提出了采用贝叶斯方法进行基于MCMC方法的模型估计。 新的模拟技术,估计后验分布的一个广泛的类的非线性连续时间模型将进行研究。 文献中现有的估计方法依赖于两个观测值之间的间隔长度,因此将研究用于扩充数据集的大都会子算法。 该研究有望为大类连续时间模型的推理提供一种新的方法。 该项目由MPS多学科活动办公室(OMA)和数学科学部(DMS)共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osnat Stramer其他文献
Osnat Stramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant