Advancement of Methods for Ecological Inference
生态推理方法的进展
基本信息
- 批准号:9806448
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-15 至 1999-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analyzing aggregate data is useful in many different contexts. However, estimation is non-trivial and no reliable methods exist. Standard techniques such as regression or correlation perform poorly (Robinson, 1950; Goodman, 1953). Recently, King (1997) has proposed a varying parameter model. While this model is more efficient than a standard OLS model, it is not able to account for the central problem of correlation between the parameters and the regressors (aggregation bias). The aggregation bias problem must be addressed in any aggregate data model. This project addresses the problem through the framework of switching regression models where the state-defining variable may be deterministic or stochastic and measures homogeneity across the macro-level units. While this specification is viable, it is unclear how to implement such a model. Preliminary work has shown that time-series methods of testing parameter constancy are useful in this regard. This research explores and analyzes different methods of testing for parameter constancy in aggregate data through developing formal methods of assessing structural shifts in aggregate data. In addition to pursuing the covariate approach, the research also explores the fitting of mixture distributions. Fitting a mixture model involves many crucial aspects, including choosing the type of distribution, the degree of mixture, diagnostics for fit, and number of states.
分析聚合数据在许多不同的上下文中都很有用。然而,估计是不平凡的,没有可靠的方法存在。回归或相关等标准技术表现不佳(Robinson, 1950; Goodman, 1953)。最近,King(1997)提出了一个变参数模型。虽然这个模型比标准的OLS模型更有效,但它不能解释参数和回归量(聚集偏差)之间相关性的中心问题。在任何聚合数据模型中都必须解决聚合偏差问题。该项目通过切换回归模型的框架来解决这个问题,其中状态定义变量可能是确定性的或随机的,并测量宏观层面单元的同质性。虽然这个规范是可行的,但是如何实现这样一个模型还不清楚。初步工作表明,时间序列方法测试参数常数是有用的,在这方面。本研究通过发展评估聚合数据结构变化的形式化方法,探索和分析了聚合数据参数恒常性的不同测试方法。除了采用协变量方法外,本研究还探讨了混合分布的拟合。拟合混合模型涉及许多关键方面,包括选择分布类型、混合程度、拟合诊断和状态数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wendy Cho其他文献
Wendy Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wendy Cho', 18)}}的其他基金
Collaborative Research: High-Performance Computational Standards For Redistricting
协作研究:重新划分的高性能计算标准
- 批准号:
1725418 - 财政年份:2017
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: Shifting Paradigms: Using Subset Selection to Obtain Matched Samples
协作研究:转变范式:使用子集选择来获取匹配样本
- 批准号:
0849223 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
SGER-III-CXT: A Computational Appraoch to Zoning Analysis
SGER-III-CXT:分区分析的计算方法
- 批准号:
0827540 - 财政年份:2008
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidation of spatial and ecological characteristics of human pathogenic bacteria living symbiotically in the bovine gastrointestinal tract and construction of new control methods for them
阐明牛胃肠道共生的人类致病菌的空间和生态特征并构建新的控制方法
- 批准号:
23H02366 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of selective isolation methods and conservation of genetic resources for elucidating the ecological distribution of the extremely rare motile actinomycetes.
开发选择性分离方法和保护遗传资源,以阐明极其罕见的运动放线菌的生态分布。
- 批准号:
23K05270 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delivering training courses for environmental scientists - Bayesian methods for ecological and environmental modelling
为环境科学家提供培训课程——生态和环境建模的贝叶斯方法
- 批准号:
NE/Y003780/1 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Training Grant
Improving Methods for Dealing with Missing Data in Drug Use and Addiction Research: The Use of Later-Retrieval in Ecological Momentary Assessment
改进处理药物使用和成瘾研究中缺失数据的方法:后期检索在生态瞬时评估中的应用
- 批准号:
10721443 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Statistical methods for identifying unobserved structure in complex ecological and environmental data
识别复杂生态和环境数据中未观察到的结构的统计方法
- 批准号:
DGECR-2022-00456 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Launch Supplement
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
- 批准号:
10339931 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Statistical methods for identifying unobserved structure in complex ecological and environmental data
识别复杂生态和环境数据中未观察到的结构的统计方法
- 批准号:
RGPIN-2022-04750 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Optimizing sampling design, data integration, and methods for understanding population dynamics and predicting ecological changes
优化抽样设计、数据整合以及了解种群动态和预测生态变化的方法
- 批准号:
RGPIN-2020-07034 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
- 批准号:
10595096 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Optimizing sampling design, data integration, and methods for understanding population dynamics and predicting ecological changes
优化抽样设计、数据整合以及了解种群动态和预测生态变化的方法
- 批准号:
RGPNS-2020-07034 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Northern Research Supplement