Collaborative Research: High Performance Multi-Scale Ocean Modelling
协作研究:高性能多尺度海洋建模
基本信息
- 批准号:9814651
- 负责人:
- 金额:$ 20.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop and implement new algorithms for high performance, highly parallel computers to enhance the Spectral Element Ocean Model developed at Rutgers University. As a testbed for this algorithmic development, the code produced will be applied to multi-scale global oceanic simulations which will focus on the Northeast Pacific continental shelves, including the Western Coast of the United States and the Coastal Gulf of Alaska. These regions are at the center of an investigative program aimed at understanding how physical processes, with multiple temporal and spatial scales, influence marine ecosystems. The new algorithms developed will address the computational difficulties associates with the long and multi-scale global oceanic simulations. The research will focus on robust two-and three-dimensional elliptic iterative solvers, optimization of the code on cache-based processors, and scalable parallel performance on unstructured grids. In particular it will exploit a new treatment for fast eaves that avoids splitting the barotropic mode and, thus, eliminates the shallow water equations from the model.
该项目将为高性能、高度并行的计算机开发和实施新的算法,以增强罗格斯大学开发的光谱元素海洋模型。作为这一算法开发的试验平台,所产生的代码将用于多尺度全球海洋模拟,重点是东北太平洋大陆架,包括美国西海岸和阿拉斯加沿海海湾。 这些地区是一个调查项目的中心,该项目旨在了解具有多个时空尺度的物理过程如何影响海洋生态系统。 新算法的开发将解决与长期和多尺度全球海洋模拟的计算困难。 研究将集中在强大的二维和三维椭圆迭代求解器,基于缓存的处理器上的代码优化,以及非结构化网格上的可扩展并行性能。 特别是,它将利用一种新的处理快速屋檐,避免分裂正压模式,从而消除浅水方程的模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamed Iskandarani其他文献
On the Construction of Uncertain Time Series Surrogates Using Polynomial Chaos and Gaussian Processes
- DOI:
10.1007/s11004-019-09806-8 - 发表时间:
2019-05-20 - 期刊:
- 影响因子:3.600
- 作者:
Pierre Sochala;Mohamed Iskandarani - 通讯作者:
Mohamed Iskandarani
A polynomial chaos framework for probabilistic predictions of storm surge events
- DOI:
10.1007/s10596-019-09898-5 - 发表时间:
2019-11-14 - 期刊:
- 影响因子:2.000
- 作者:
Pierre Sochala;Chen Chen;Clint Dawson;Mohamed Iskandarani - 通讯作者:
Mohamed Iskandarani
Mohamed Iskandarani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohamed Iskandarani', 18)}}的其他基金
Madden-Julian Oscillation (MJO) Initiation-DYNAMO (DYNAmics of the Madden-julian Oscillation) and Beyond
马登朱利安振荡 (MJO) 启动 - DYNAMO(马登朱利安振荡动力学)及其他
- 批准号:
1450582 - 财政年份:2015
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Efficient Solvers for and Simulation of Stratified Flows in High Aspect Ratio Oceanic Environments
高展弦比海洋环境中分层流的高效求解器和模拟
- 批准号:
0622662 - 财政年份:2006
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
DDDAS-TMRP: Collaborative Research: Adaptive Data-Driven Sensor Configuration, Modeling, and Deployment for Oil, Chemical, and Biological Contamination near Coastal Facilities
DDDAS-TMRP:协作研究:沿海设施附近石油、化学和生物污染的自适应数据驱动传感器配置、建模和部署
- 批准号:
0540155 - 财政年份:2005
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: High Performance Multi-Scale Ocean Modelling
协作研究:高性能多尺度海洋建模
- 批准号:
0196444 - 财政年份:2001
- 资助金额:
$ 20.94万 - 项目类别:
Continuing Grant
Numerical and Theoretical Analysis of Shallow Water Flow with Applications to the Global Oceanic Circulation
浅水流的数值和理论分析及其在全球海洋环流中的应用
- 批准号:
0196458 - 财政年份:2001
- 资助金额:
$ 20.94万 - 项目类别:
Continuing Grant
Numerical and Theoretical Analysis of Shallow Water Flow with Applications to the Global Oceanic Circulation
浅水流的数值和理论分析及其在全球海洋环流中的应用
- 批准号:
9730596 - 财政年份:1998
- 资助金额:
$ 20.94万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Standard Grant