Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations

合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化

基本信息

  • 批准号:
    2400166
  • 负责人:
  • 金额:
    $ 19.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Michael G. Walter at the University of North Carolina at Charlotte and Professor James M. Hanna at Winthrop University are designing new, low-cost, scalable, and high efficiency photocatalysts, scaffolds that harness light energy for performing chemical transformations. The overall goal is to advance more sustainable, carbon-based photocatalyst scaffolds that will reduce cost and overall environmental impact compared to traditional precious metal-based systems. The study includes the synthesis and study of new catalyst scaffolds, with the goal of advancing fundamental knowledge about how modifications affect reactivity. The new catalysts will then be studied in a variety of chemical transformations that currently rely on expensive-metal photocatalysts. The work will be built upon a new regional collaboration between UNC Charlotte and Winthrop University and will involve both undergraduate and graduate students from both research groups who will gain exposure to diverse and interdisciplinary activities across the practice of chemical research. In addition, the research components will be connected with the classroom teaching of the investigators, introducing photochemical science topics to a diverse group of graduate and undergraduate students. The investigators will continue their collaborations with local science museums, educators, and schools to develop and provide chemistry outreach programs to the Charlotte region.The goal of this research is to study and develop new thiazolo(5,4-d)thiazole (TTz) organic photoredox catalyst derivatives. TTzs are attractive photocatalyst materials due to their low-cost, single reaction step syntheses, non-halogenated, and high photochemically stable heterobicyclic core. TTz photocatalysts will address the need to develop scalable, high efficiency organic photocatalyst tools to drive a wide array of organic transformations. The team hypothesizes that the unique TTz photochemical properties enable new and improve upon existing transformations currently driven with expensive and toxic molecular transition-metal catalysts. Secondly, it is proposed that extended TTz photocatalyst materials will enable lower energy (e.g. red light) driven transformations while helping to tune redox characteristics for specific transformations. Preliminary studies have demonstrated the ability of a series of TTzs to drive reactions with much higher efficiencies than previously used transition metal photocatalysts. The collaborative team will further explore photocatalyst stability, reaction rates, and ability to drive a range of organic transformations. A library of new TTz photocatalyst derivatives will be developed with tunable light absorption properties and redox characteristics. Photochemical studies will be carried out to establish reaction quantum yields, and rates will be monitored using fluorescence and chromogenic TTz coloration changes. This collaborative research program will focus on photochemical efficiency metrics to help guide subsequent generations of TTz photocatalysts with a focus on optimizing performance and versatility. The materials produced by this project can benefit society by contributing to the development of a new series of photocatalyst materials that have the potential to improve synthetic efficiency and lower provide for more sustainable organic synthesis methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,北卡罗来纳大学夏洛特分校的Michael G.Walter教授和温斯罗普大学的James M.Hanna教授正在设计新的、低成本、可扩展和高效的光催化剂,这些支架利用光能进行化学转化。总体目标是发展更可持续的碳基光催化剂支架,与传统的基于贵金属的系统相比,这种支架将降低成本和整体环境影响。这项研究包括合成和研究新的催化剂支架,目的是促进关于修饰如何影响反应活性的基础知识。然后,将对新催化剂进行各种化学转化研究,目前这些转化依赖于昂贵的金属光催化剂。这项工作将建立在北卡罗来纳大学夏洛特分校和温斯罗普大学之间的新的地区性合作基础上,两个研究小组的本科生和研究生都将参与到化学研究实践中的各种跨学科活动中。此外,研究部分将与研究人员的课堂教学相联系,向不同的研究生和本科生介绍光化学科学主题。研究人员将继续与当地科学博物馆、教育工作者和学校合作,开发和提供夏洛特地区的化学推广项目。本研究的目标是研究和开发新的噻唑(5,4-d)噻唑(TTZ)有机光还原催化剂衍生物。TTZ具有成本低、一步反应合成、无卤化、光化学稳定性高等优点,是一种极具吸引力的光催化材料。TTZ光催化剂将满足开发可扩展的、高效的有机光催化剂工具的需求,以推动广泛的有机转化。该团队假设,独特的ttz光化学性质使目前由昂贵和有毒的分子过渡金属催化剂驱动的现有转化能够实现新的和改进的转化。其次,有人提出,扩展的ttz光催化剂材料将使较低能量(例如红光)驱动的转化成为可能,同时有助于调整特定转化的氧化还原特性。初步研究表明,与以前使用的过渡金属光催化剂相比,一系列TTZ能够以更高的效率驱动反应。合作小组将进一步探索光催化剂的稳定性、反应速度和驱动一系列有机转化的能力。将开发一个具有可调光吸收特性和氧化还原特性的新型TTZ光催化剂衍生库。将进行光化学研究,以确定反应量子产率,并将使用荧光和显色的ttz变色变化来监测反应速率。这一合作研究计划将重点放在光化学效率指标上,以帮助指导下一代TTZ光催化剂,重点是优化性能和多功能性。该项目生产的材料可以通过促进新系列光催化剂材料的开发而造福社会,这些材料具有提高合成效率的潜力,并为更可持续的有机合成方法提供了更低的成本。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Hanna其他文献

The saturation bifurcation in coupled oscillators
耦合振荡器的饱和分岔
  • DOI:
    10.1016/j.physleta.2018.05.001
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Harrison Wood;Ahmed Roman;James Hanna
  • 通讯作者:
    James Hanna
Pseudomomentum: origins and consequences
伪动量:起源和后果
Contrasting bending energies from bulk elastic theories.
对比体弹性理论的弯曲能。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    H. G. Wood;James Hanna
  • 通讯作者:
    James Hanna

James Hanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Hanna', 18)}}的其他基金

Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310665
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Crumple Dynamics and Interactions Mediating Elastic Deformations of Structures
调节结构弹性变形的压皱动力学和相互作用
  • 批准号:
    2210797
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Biot-elastic and Direct Models of Shells and Strips
贝壳和条带的生物弹性和直接模型
  • 批准号:
    1902444
  • 财政年份:
    2019
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Biot-elastic and Direct Models of Shells and Strips
贝壳和条带的生物弹性和直接模型
  • 批准号:
    2001262
  • 财政年份:
    2019
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Mechanics of Dynamic Discontinuities
动态不连续性的力学
  • 批准号:
    1462501
  • 财政年份:
    2015
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
  • 批准号:
    2247661
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-SC: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS-SC:可持续二氮固定的电化学方法
  • 批准号:
    2247257
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241892
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
  • 批准号:
    2247662
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Processive Ring-Opening Metathesis Polymerization Through Molecularly Confined Catalysts
CAS:合作研究:通过分子限域催化剂进行开环易位聚合
  • 批准号:
    2305566
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了