Developing Statistical Methodology and an Analytical Framework for Evaluating Environmental Justice via a Longitudinal Study of Metropolitan New York City

通过对纽约大都会的纵向研究开发评估环境正义的统计方法和分析框架

基本信息

  • 批准号:
    9816560
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-10-01 至 2002-09-30
  • 项目状态:
    已结题

项目摘要

This three-year study will conduct basic methodological research into longitudinal and semiparametric statistical techniques applicable to the general problem of environmental justice. In the process it will demonstrate methodological applicability on data from metropolitan New York City. The overall goal is to define and disseminate statistically sound methods for studying the issues of environmental justice, including methodology that: (1) utilizes the geographic nature of the data, (2) evaluates and accounts for the social-economic status (SES) of the population in addition to racial variation, and (3) incorporates important temporal information. The larger issue in this research is attempting to get beyond the reliance on association for causal inference commonly encountered in simple cross-sectional models. In the past, a significant amount of this type of analysis has been conducted under the banner of environmental justice or environmental equity. However, these studies fail to answer the true question of interest: Were minority populations unfairly imposed upon by design? That is, did society place hazardous, polluting, or otherwise environmentally unfriendly sites in minority neighborhoods because they were minority neighborhoods? A key element of the problem is the question of who was there first, the site or the minority community? Secondarily, if the minority community was there first, was that community unfairly imposed upon at that time in relation to the rest of the region? These questions must be adequately answered first before environmental injustice can be claimed.
这项为期三年的研究将对适用于环境正义一般问题的纵向和半参数统计技术进行基本方法研究。 在这一过程中,它将展示方法对大都市纽约市数据的适用性。 总体目标是确定和传播用于研究环境正义问题的统计学上合理的方法,包括以下方法:(1)利用数据的地理性质,(2)除了种族差异外,还评估和说明人口的社会经济地位(SES),以及(3)纳入重要的时间信息。 本研究中更大的问题是试图超越简单横截面模型中常见的因果推理对关联的依赖。 在过去,大量的这类分析是在环境正义或环境公平的旗帜下进行的。 然而,这些研究未能回答真正感兴趣的问题:少数群体是否被设计不公平地强加于人? 也就是说,社会把危险的,污染的,或其他环境不友好的网站在少数民族社区,因为他们是少数民族社区? 问题的一个关键因素是谁先到那里的问题,是遗址还是少数民族社区? 其次,如果少数群体先在那里,那么相对于该地区的其他群体,该群体当时是否受到了不公平的对待? 这些问题必须首先得到充分的回答,然后才能声称环境不公正。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald Fricker其他文献

Ronald Fricker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
  • 批准号:
    2238656
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Statistical Methodology for Multiple Events in Time and Space
时空多事件的统计方法
  • 批准号:
    RGPIN-2018-04799
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Grants Program - Individual
Innovations in Statistical Methodology and Applications to Economics, Engineering, Health, and Medicine
统计方法的创新及其在经济、工程、健康和医学中的应用
  • 批准号:
    2210913
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Development and innovation of statistical theory and methodology of network meta-analysis
网络荟萃分析统计理论与方法的发展与创新
  • 批准号:
    22H03554
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Methodology towards Technology
技术统计方法
  • 批准号:
    RGPIN-2019-06370
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methodology for Correlated Data in Health Sciences
健康科学相关数据的统计方法
  • 批准号:
    RGPIN-2019-04741
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for rank based sampling design and finite mixture models
基于等级的抽样设计和有限混合模型的统计方法
  • 批准号:
    RGPIN-2020-06696
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
  • 批准号:
    RGPIN-2019-05917
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了