CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
基本信息
- 批准号:2238656
- 负责人:
- 金额:$ 44.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the rapid development of genetic technologies and the continuing collection of large-scale biobanks, scientists are provided with unprecedented opportunities to predict, prevent, and treat common diseases in a personalized and efficient way. In the meantime, analyzing such data presents many new challenges as 1) data come from multiple sources and can suffer from various biases and confounding; 2) scientific questions need an understanding of not only associations but also causal relationships among different risk factors and diseases. This project will address a range of statistical challenges in performing the integration of different omics data types to elucidate potential genetic changes that lead to disease development or relate to the discovery of treatment targets. The project will bridge statistics, machine learning, genetics, and medical research from an analytical perspective. In addition to helping young generations develop independent thinking, the educational activities will help them develop the ability to form objective opinions on social events and to analyze data to form an unbiased judgment on news stories. The PI will develop software and share research results on social media that can be useful to scientists and clinicians, doctors, and industrial professionals. This project also supports graduate students in the research. In the project, the PI plans to develop three aspects of research for modern statistical genetics. For Mendelian Randomization, which uses genetic mutations as natural experiments to understand risk factors for disease progression, the PI will focus specifically on adjusting for confounding and evaluating the temporal causal effects of clinical risk factors with new frameworks. For analyzing gene regulation with single-cell multi-omics data, the PI will work on a widespread regulation mechanism called alternative polyadenylation, building new statistical models to understand its functional roles with data from new technologies such as spatial transcriptomics and single-cell CRISPR screens. Furthermore, the PI will also investigate new statistical ideas motivated by recent methodological developments in genetics that can help to solve general problems in hypotheses testing and Bayesian inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着基因技术的快速发展和大规模生物库的不断收集,为科学家提供了前所未有的机会,以个性化和有效的方式预测,预防和治疗常见疾病。与此同时,分析这些数据带来了许多新的挑战,因为1)数据来自多个来源,可能会受到各种偏见和混淆的影响; 2)科学问题不仅需要了解不同风险因素和疾病之间的关联,而且还需要了解它们之间的因果关系。该项目将解决一系列统计挑战,整合不同的组学数据类型,以阐明导致疾病发展或与发现治疗靶点有关的潜在遗传变化。该项目将从分析的角度连接统计学,机器学习,遗传学和医学研究。除了帮助年轻一代发展独立思考外,教育活动还将帮助他们培养对社会事件形成客观意见的能力,并分析数据以形成对新闻报道的公正判断。PI将开发软件,并在社交媒体上分享研究成果,这些成果对科学家、临床医生、医生和工业专业人士都很有用。该项目还支持研究生的研究。在该项目中,PI计划为现代统计遗传学开展三个方面的研究。对于孟德尔随机化,其使用基因突变作为自然实验来了解疾病进展的风险因素,PI将特别关注调整混杂因素,并使用新框架评价临床风险因素的时间因果效应。为了利用单细胞多组学数据分析基因调控,PI将研究一种称为替代多聚腺苷酸化的广泛调控机制,建立新的统计模型,利用空间转录组学和单细胞CRISPR等新技术的数据来了解其功能作用筛选。此外,PI还将研究遗传学最新方法学发展所激发的新的统计思想,这些思想有助于解决假设检验和贝叶斯推理中的一般问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingshu Wang其他文献
Online Single-cell RNA-seq Data Denoising with Transfer Learning
通过迁移学习进行在线单细胞 RNA-seq 数据去噪
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bowei Kang;Eroma Abeysinghe;Divyansh Agarwal;Quanli Wang;Sudhakar Pamidighantam;Mo Huang;N. Zhang;Jingshu Wang - 通讯作者:
Jingshu Wang
INFERENCE IN TWO-SAMPLE SUMMARY-DATA MENDELIAN RANDOMIZATION USING ROBUST ADJUSTED PROFILE SCORE By
使用稳健调整的轮廓分数进行两个样本摘要数据孟德尔随机化的推论
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qingyuan Zhao;Jingshu Wang;G. Hemani;Jack;Bowden;Dylan S. Small - 通讯作者:
Dylan S. Small
“Impressive Scenery of Shanxi” galas held in Shanxi to promote tourism development
- DOI:
10.1007/s11442-017-1444-y - 发表时间:
2017-10-19 - 期刊:
- 影响因子:5.200
- 作者:
Lufeng Yao;Mi Hao;Jingshu Wang - 通讯作者:
Jingshu Wang
Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure
CaF2纳米晶高压下的结构相变和压缩性
- DOI:
10.3390/cryst8050199 - 发表时间:
2018-05 - 期刊:
- 影响因子:2.7
- 作者:
Jingshu Wang;Jinghan Yang;Tingjing Hu;Xiangshan Chen;Jihui Lang;Xiaoxin Wu;Junkai Zhang;Haiying Zhao;Jinghai Yang;Qiliang Cui - 通讯作者:
Qiliang Cui
New Diagnosis of Hypertension among Celecoxib and Nonselective NSAID Users: A Population-Based Cohort Study
塞来昔布和非选择性 NSAID 使用者高血压的新诊断:一项基于人群的队列研究
- DOI:
10.1345/aph.1h659 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jingshu Wang;C. Mullins;M. Mamdani;D. Rublee;F. Shaya - 通讯作者:
F. Shaya
Jingshu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingshu Wang', 18)}}的其他基金
Statistical Learning and Inference for Single-Cell RNA Sequencing
单细胞 RNA 测序的统计学习和推理
- 批准号:
2113646 - 财政年份:2021
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
相似海外基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Modelling the rheology of biopolymers and sustainable food systems: exploring new challenges for soft matter research
生物聚合物和可持续食品系统的流变学建模:探索软物质研究的新挑战
- 批准号:
EP/X014738/1 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Research Grant
Political Debasement in Japan and Its Challenges: New Directions in the Study of Deliberative Political Communication
日本的政治堕落及其挑战:协商政治传播研究的新方向
- 批准号:
23K01245 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Human Developmental Biology Resource (HDBR): meeting new trends and challenges in developmental biobanking
人类发育生物学资源(HDBR):应对发育生物样本库的新趋势和挑战
- 批准号:
MR/X008304/1 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Research Grant
CAREER: New Challenges in Analysis of Boolean Functions
职业:布尔函数分析的新挑战
- 批准号:
2239160 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
- 批准号:
2311397 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
- 批准号:
MR/V024124/2 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Fellowship
New Challenges in Wireless Systems
无线系统的新挑战
- 批准号:
RGPIN-2020-04188 - 财政年份:2022
- 资助金额:
$ 44.88万 - 项目类别:
Discovery Grants Program - Individual
New Challenges on the Urban Periphery
城市周边的新挑战
- 批准号:
AH/W009684/1 - 财政年份:2022
- 资助金额:
$ 44.88万 - 项目类别:
Research Grant
NEW CHALLENGES FOR OCCUPATIONAL SAFETY AND HEALTH IN TIMES OF THE DIGITAL TRANSFORMATION IN EUROPE: THE ROLE OF DIGITAL LABOUR PLATFORMS
欧洲数字化转型时期职业安全与健康的新挑战:数字化劳动力平台的作用
- 批准号:
ES/X006301/1 - 财政年份:2022
- 资助金额:
$ 44.88万 - 项目类别:
Research Grant