Inference and Performance Problems Related to High Variability Phenomena in Measured Data Network Traffic

与测量的数据网络流量中的高变异性现象相关的推理和性能问题

基本信息

  • 批准号:
    9818076
  • 负责人:
  • 金额:
    $ 4.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-04-15 至 1999-09-30
  • 项目状态:
    已结题

项目摘要

A cooperative arrangement between Cornell University and AT&T Labs-Research allows Cornell's Professor Sidney Resnick to visit AT&T Labs-Research to collaborate with Dr. Walter Willinger and others at AT&T Labs-Research on problems related to (i) providing an in-depth understanding of the dynamic nature of today's data network traffic and (ii) exploiting the newly-gained insights for the economic design and effective and efficient management of modern high-speed communications networks. The work focuses on the dual themes of how to construct and fit models that can account for empirically observed data network traffic characteristics such as high-variability, heavy-tails, long-range dependence, self-similar behavior. Phenomena exhibiting heavy tails and/or long-range dependence, although departing in marked fashion from classical assumptions of Gaussian distributions, finite variances and short-range interactions, have been frequently noted in a broad array of fields such as insurance, economics and finance. These phenomenahave recently attracted renewed interest due to their ubiquitous presence in traffic measurements from today's data networks and especially because they often play havoc with established network and traffic engineering methodologies that are based on conventional (i.e., telephony-based) wisdom. As a result, this networking application opens up a variety of new and fundamental research topics at the intersection of applied probability and statistics and provides unique opportunities for close collaborations between mathematicians and engineers to work on technically challenging problems that are, at the same time, highly relevant in practice. This GOALI project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
康奈尔大学和AT&T Labs-Research之间的合作安排允许康奈尔大学的Sidney Resnick教授访问AT&T Labs-Research,与AT&T Labs的Walter Willinger博士和其他人合作研究与以下相关的问题:(I)提供对当今数据网络流量动态性质的深入了解,以及(Ii)利用新获得的对现代高速通信网络的经济设计和有效和高效管理的见解。这项工作集中在如何构建和拟合能够解释经验观察到的数据网络流量特征的双重主题,如高变异性、重尾、长范围相关性、自相似行为。重尾和/或长程相关性的现象,尽管明显背离了高斯分布、有限方差和短程相互作用的经典假设,但在保险、经济和金融等广泛领域经常被注意到。这些现象最近重新引起了人们的兴趣,因为它们在当今数据网络的流量测量中无处不在,特别是因为它们经常对基于传统(即基于电话)的智慧的已建立的网络和流量工程方法造成严重破坏。因此,这一联网应用程序在应用概率和统计学的交叉点上开辟了各种新的和基本的研究课题,并为数学家和工程师之间的密切合作提供了独特的机会,以解决同时在实践中高度相关的具有技术挑战性的问题。该GOALI项目由MPS多学科活动办公室(OMA)和数学科学处(DMS)共同支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sidney Resnick其他文献

Hidden regular variation of moving average processes with heavy-tailed innovations
具有重尾创新的移动平均过程的隐藏规律变化
  • DOI:
    10.1239/jap/1417528480
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Sidney Resnick;Joyjit Roy
  • 通讯作者:
    Joyjit Roy

Sidney Resnick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sidney Resnick', 18)}}的其他基金

Long Range Dependence, Heavy Tails and Communication Networks
长距离依赖、重尾和通信网络
  • 批准号:
    0071073
  • 财政年份:
    2000
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Topics in Heavy Tailed Modeling and Long Range Dependence
重尾建模和远程依赖的主题
  • 批准号:
    9704982
  • 财政年份:
    1997
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Heavy Tailed Modelling
数学科学:重尾建模主题
  • 批准号:
    9400535
  • 财政年份:
    1994
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Extreme Values, Heavy Tailed Phenomena and Related Topics
数学科学:极值、重尾现象及相关主题
  • 批准号:
    9100027
  • 财政年份:
    1991
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Extreme Values and Stochastic Models
数学科学:极值和随机模型
  • 批准号:
    8801034
  • 财政年份:
    1988
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Extreme Values, Stable Laws, and Stochastic Models
数学科学:极值、稳定定律和随机模型
  • 批准号:
    8202335
  • 财政年份:
    1982
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Statistica - Stochastic Modelling
Statistica - 随机建模
  • 批准号:
    7514513
  • 财政年份:
    1975
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Standard Grant

相似海外基金

Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Standard Grant
Fabrication of high-performance fluorine remover to solve African water problems
制造高性能除氟剂解决非洲水问题
  • 批准号:
    22H00568
  • 财政年份:
    2022
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of an educational method for the new aerospace age that includes the individual fabrication of mechanical design problems and the understanding of their performance.
开发新航空航天时代的教育方法,包括机械设计问题的单独制作和对其性能的理解。
  • 批准号:
    22K02941
  • 财政年份:
    2022
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solution of Multi-Physics Flow Problems in Performance Portable Frameworks
高性能便携式框架中多物理场流问题的解决方案
  • 批准号:
    2436127
  • 财政年份:
    2020
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Studentship
Problems with Sustained Motor Performance in Parkinson's Disease and Effect of Neurofeedback: A Functional MRI Investigation
帕金森病的持续运动表现问题和神经反馈的影响:功能性 MRI 研究
  • 批准号:
    10429975
  • 财政年份:
    2019
  • 资助金额:
    $ 4.28万
  • 项目类别:
Problems with Sustained Motor Performance in Parkinson's Disease and Effect of Neurofeedback: A Functional MRI Investigation
帕金森病的持续运动表现问题和神经反馈的影响:功能性 MRI 研究
  • 批准号:
    10189712
  • 财政年份:
    2019
  • 资助金额:
    $ 4.28万
  • 项目类别:
CSR: Small: A Just-in-Time, Cross-Layer Instrumentation Framework for Diagnosing Performance Problems in Distributed Applications
CSR:小型:用于诊断分布式应用程序中性能问题的即时跨层仪表框架
  • 批准号:
    2016178
  • 财政年份:
    2019
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Standard Grant
CSR: Small: A Just-in-Time, Cross-Layer Instrumentation Framework for Diagnosing Performance Problems in Distributed Applications
CSR:小型:用于诊断分布式应用程序中性能问题的即时跨层仪表框架
  • 批准号:
    1815323
  • 财政年份:
    2018
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Standard Grant
Improving Particle Filter Performance in Spatially-Extended Problems Using Generalized Random Field Likelihoods
使用广义随机场似然提高空间扩展问题中的粒子滤波器性能
  • 批准号:
    1821074
  • 财政年份:
    2018
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Continuing Grant
Perf4JS: Automatically Fixing Performance Problems in Real-World JavaScript Applications
Perf4JS:自动修复现实 JavaScript 应用程序中的性能问题
  • 批准号:
    383433544
  • 财政年份:
    2017
  • 资助金额:
    $ 4.28万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了