Stochastic and Nonlinear Phenomena in Physics and Biology
物理和生物学中的随机和非线性现象
基本信息
- 批准号:9819646
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this research proposal is the interplay of stochasticity and nonlinearity in physics and biology. Two projects are in physics and have their origin in earlier studies by the Principal Investigator on the amplification of intrinsic noise by chaos. Two projects are in biology and concern the fundamental constructive role of noise in molecular and cellular mechanisms. Each project involves a combination of methods. Analytic and numerical methods will be used, and contact with experiments will be made wherever possible. One project of each type is described below.1) The classical Lyapunov exponent has been shown by the Principal Investigator to be a quantum signature of classical chaos. This realization depends on the use of Husimi-Wigner distributions that have direct classical analogues as non-negative ensemble densities. Husimi-Wigner wave packets are most easily constructed using generalized coherent states. In this proposal, a new class of coherent states called Klauder states will be studied. Especially interesting are the Klauder states for the Coulomb problem. This work will impact research on quantum-classical correspondence and on experiments with Rydberg atom traps. 2) Rectified Brownian movement is a mechanism by which metabolic Gibbs free energy is converted into useful mechanical work inside cells. Rather than a direct chemo-mechanical conversion in which chemical energy is transduced into work, an indirect mechanism is proposed. In this alternative mechanism, work is done by heat, but not in violation of the second law of thermodynamics. Instead, a diffusion regime is applicable in which the boundary conditions are asymmetric. The asymmetry is paid for with metabolic free energy. The impact of this work will be to potentially provide a unified mechanism for a great many basic cellular processes.
本研究计划的重点是物理学和生物学中随机性和非线性的相互作用。 两个项目是在物理学和起源于早期的研究由首席研究员对混沌放大固有噪声。 两个项目是在生物学和关注的基本建设性作用的噪音在分子和细胞机制。每一个项目都涉及到方法的组合。 分析和数值方法将被使用,并与实验接触将尽可能。每种类型的一个项目如下所述。1)经典李雅普诺夫指数已被首席研究员证明是经典混沌的量子签名。 这种实现依赖于使用具有直接经典类似物作为非负系综密度的Husimi-Wigner分布。 Husimi-Wigner波包最容易用广义相干态构造。 在这个方案中,我们将研究一类新的相干态,称为Klauder态。特别有趣的是库仑问题的Klauder状态。这项工作将影响量子经典对应的研究和里德伯原子陷阱的实验。2)修正布朗运动是一种机制,通过该机制,代谢吉布斯自由能在细胞内转化为有用的机械功。 而不是一个直接的化学机械转换,其中化学能转化为工作,提出了一个间接的机制。 在这种替代机制中,功是通过热来完成的,但不违反热力学第二定律。相反,扩散制度是适用的边界条件是不对称的。 这种不对称性是用代谢自由能来补偿的。这项工作的影响将可能为许多基本的细胞过程提供统一的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Fox其他文献
Ronald Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Fox', 18)}}的其他基金
Stochastic Phenomena in Physics and Biology
物理和生物学中的随机现象
- 批准号:
9514853 - 财政年份:1996
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Stochastic and Chaotic Phenomena in Physics
物理学中的随机和混沌现象
- 批准号:
9203878 - 财政年份:1992
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Fluctuation Phenomena in Thermal Physics
热物理中的涨落现象
- 批准号:
7921541 - 财政年份:1980
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Travel to Attend: International Symposium on Nonlinear Nonequilibrium Statistical Mechanics; Kyoto, Japan; July 8-14, 1978
出差参加:非线性非平衡统计力学国际研讨会;
- 批准号:
7819189 - 财政年份:1978
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Fluctuations and Non-Equilibrium Statistical Physics
涨落与非平衡统计物理
- 批准号:
7707372 - 财政年份:1977
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
相似海外基金
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Research Grant
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
- 批准号:
23K03274 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
- 批准号:
23K13005 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
- 批准号:
22K03442 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave phenomena excited on vortex lines in quantum turbulence
量子湍流中涡线激发的非线性波现象
- 批准号:
22K03518 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear phenomena in a gate driver circuit with passive element degradation
具有无源元件退化的栅极驱动电路中的非线性现象
- 批准号:
22K12201 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
- 批准号:
RGPIN-2018-05296 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear partial differential equations and propagation phenomena
非线性偏微分方程和传播现象
- 批准号:
DP220101820 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Projects














{{item.name}}会员




