New Algebraic Methods for Simplifying the Design and Measurement of Sculptured Shapes

简化雕刻形状设计和测量的新代数方法

基本信息

  • 批准号:
    9820804
  • 负责人:
  • 金额:
    $ 30.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-01-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of relatively simple and innovative mathematical procedures and computer algorithms for modeling, aligning, modifying and measuring large classes of manufactured objects that have free-form or sculptured shapes. A new algorithm for decomposing two-dimensional algebraic curves as sums of products of simple lines and conics will play a major role in the development of these new procedures. This algorithm will be used to describe free-form curves in terms of their primitives; to determine the pose of objects in arbitrary configurations; to modify existing implicit polynomial models both locally and globally; and to interpolate sculptured, three dimensional surfaces between two dimensional curves in parallel planes. A state-of-the-art coordinate measuring machine will be used in many of the proposed investigations to test, refine and verify the proceduresIf successful, this research will provide more user-friendly methods for modeling and measuring objects with complex contours, such as turbine blades, gears, ship hulls and automobile bodies; streamlined procedures for the computer aided geometric design of a large variety of manufactured objects; new techniques for measuring such objects more accurately and in less time using coordinate measuring machines; and the simplification of reverse engineering algorithms to produce objects for which there are no known technical drawings or specifications. This will reduce the cost and improve the quality of future manufactured products. Furthermore, the underlying mathematical decomposition will lead to a far better understanding of higher degree algebraic curves, a fundamental mathematical subject that has been studied extensively since the 17th century by some of the world's most foremost mathematicians. Algebraic curves are used widely in many different practical, technical areas, and adding insight relative to their underlying features will facilitate their use in these areas.
这笔赠款提供资金,用于开发相对简单和创新的数学程序和计算机算法,用于建模、调整、修改和测量具有自由形状或雕塑形状的大类人造物体。一种将二维代数曲线分解为简单直线和二次曲线乘积和的新算法将在这些新程序的开发中发挥重要作用。该算法将被用来描述自由曲线的基元;确定任意形状物体的姿态;局部和全局地修改现有的隐式多项式模型;以及在平行平面上的两维曲线之间插入雕塑的三维曲面。许多拟议的调查将使用最先进的坐标测量机来测试、改进和验证程序。如果研究成功,这项研究将提供更方便用户的方法来建模和测量具有复杂轮廓的对象,如涡轮叶片、齿轮、船体和车身;简化各种制造对象的计算机辅助几何设计程序;使用坐标测量机更准确、更短时间地测量此类对象的新技术;以及简化逆向工程算法,以生产出没有已知技术图纸或规范的对象。这将降低成本,提高未来制造产品的质量。此外,基本的数学分解将导致对高次代数曲线的更好理解,高次代数曲线是一个基本的数学问题,自17世纪以来,一些世界上最顶尖的数学家对此进行了广泛的研究。代数曲线在许多不同的实践和技术领域中被广泛使用,增加与其基本特征相关的洞察力将促进它们在这些领域的使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Wolovich其他文献

William Wolovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Wolovich', 18)}}的其他基金

US-Turkey Cooperative Research: A New Implicit Polynomial Technology for Advanced Manufacturing
美土合作研究:先进制造的新型隐式多项式技术
  • 批准号:
    9731598
  • 财政年份:
    1998
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Theoretical and Practical Issues in the Design of Multi- variable Adaptive Control Systems
多变量自适应控制系统设计的理论与实践问题
  • 批准号:
    8402921
  • 财政年份:
    1984
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
Collaborative Research in an Investigation of the Relationship Between the Polynomial Matrix and Geometric Theories of Linear Systems
多项式矩阵与线性系统几何理论关系的合作研究
  • 批准号:
    7916584
  • 财政年份:
    1979
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Efficient Compensation Techniques For Multivariable Systems
多变量系统的高效补偿技术
  • 批准号:
    7610442
  • 财政年份:
    1976
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic Methods for Quantified Constraints
量化约束的代数方法
  • 批准号:
    EP/X03190X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Research Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
  • 批准号:
    2316181
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Algebraic methods in quantum information
量子信息中的代数方法
  • 批准号:
    RGPIN-2018-03968
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
  • 批准号:
    RGPIN-2020-05481
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Discovery Grants Program - Individual
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
  • 批准号:
    RGPIN-2022-03116
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
  • 批准号:
    RGPIN-2018-03880
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
  • 批准号:
    2139462
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Algebraic Topology: Methods, Computation, and Science 2022
代数拓扑:方法、计算和科学 2022
  • 批准号:
    2208855
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
A study of complex spherical codes and designs by algebraic methods
用代数方法研究复杂的球形代码和设计
  • 批准号:
    22K03410
  • 财政年份:
    2022
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了