Subfactors from Coset Conformal Field Theories

陪集共形场论的子因子

基本信息

  • 批准号:
    9820935
  • 负责人:
  • 金额:
    $ 6.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9820935Principal Investigator: Feng XuAbstract: Xu's research deals with subfactor theory, a branch of the field of operator algebras that has had an enormous impact on various areas of mathematics, above all on low-dimensional topology. By using the representation theory of affine Kac-Moody algebras and ideas from algebraic quantum field theory, a class of subfactors known as Jones-Wassermann subfactors can be constructed. These subfactors have close relations to two-dimensional conformal field theories that have attracted great attention. The aim of this project is to study Jones-Wassermann subfactors related to coset theories, which conjecturally exhaust a large class of conformal field theories. Solutions to the problems proposed for investigation, though focused on subfactors, are expected to lead to answers to open questions arising in conjunction with both the representation theory of infinite dimensional algebras and low-dimensional topology. Quantum mechanics, which revolutionized our understanding of the physical world when it arrived on the scene early in this century, raised a number of significant mathematical (not to mention philosophical) questions. The theory of operator algebras was introduced by John von Neumann in order to provide a proper mathematical framework in which to deal with such questions. Subfactor theory is a branch of the subject of operator algebras that studies the "positions" a smaller algebra might occupy within a larger one. It turns out that, because of the intricate nature of the algebras in question, the possible positions are under rather rigid control, allowable configurations often reflecting symmetries of the quantum mechanical systems to which the algebras correspond. Symmetries, especially the hidden symmetries that subfactor theory helps to uncover, play a fundamental role in science, for they usually provide the key to reducing the complexity of the questions under study by bringing the number of free parameters that must be accounted for into a mathematically mangeable range. The search for hidden symmetries has thus become a focal point for the activities of many physical scientists. Subfactor theory provides researchers with a precise tool for understanding symmetries in a host of mathematical and physical settings. The aim of this project is to shed new light on some of the important mathematical issues that surface in this context.
提案:DMS-9820935首席研究员:徐峰摘要:徐的研究涉及子因子理论,这是算子代数领域的一个分支,对数学的各个领域,尤其是低维拓扑产生了巨大的影响。通过使用仿射 Kac-Moody 代数的表示论和代数量子场论的思想,可以构造一类称为 Jones-Wassermann 子因子的子因子。这些子因素与备受关注的二维共形场论有着密切的关系。该项目的目的是研究与陪集理论相关的 Jones-Wassermann 子因子,推测它耗尽了一大类共形场论。所提出的研究问题的解决方案虽然集中于子因素,但预计将得出与无限维代数表示论和低维拓扑相关的开放问题的答案。量子力学在本世纪初问世,彻底改变了我们对物理世界的理解,提出了许多重要的数学(更不用说哲学)问题。约翰·冯·诺依曼引入算子代数理论,以提供处理此类问题的适当数学框架。子因子理论是算子代数学科的一个分支,它研究较小代数在较大代数中可能占据的“位置”。事实证明,由于所讨论的代数的复杂性,可能的位置受到相当严格的控制,允许的配置通常反映代数对应的量子力学系统的对称性。对称性,尤其是子因子理论帮助揭示的隐藏对称性,在科学中发挥着基础作用,因为它们通常通过将必须考虑的自由参数数量纳入数学上可控制的范围内,提供降低所研究问题复杂性的关键。因此,寻找隐藏的对称性已成为许多物理科学家活动的焦点。子因子理论为研究人员提供了一种精确的工具来理解许多数学和物理环境中的对称性。该项目的目的是为在此背景下出现的一些重要数学问题提供新的线索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Xu其他文献

リスク学入門(2)経済からみたリスク
风险科学导论(二)经济学视角下的风险
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshiro Higano;Feng Xu;JingJing Yan;Takeshi Mizunoya;Huanzheng Du;橘木俊詔編
  • 通讯作者:
    橘木俊詔編
An Evaluation of Regional Environment Tax Policy for Lake Kasumigaura
霞浦湖区域环境税政策评价
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takeshi Mizunoya;Susumu Uchida;Feng Xu;Keiko Nakayama;Yoshiro Higano
  • 通讯作者:
    Yoshiro Higano
Dual-regularized one-class collaborative filtering with implicit feedback
具有隐式反馈的双正则一类协同过滤
Study on Synthesis and Properties of Novel HTPB/PEG Polyurethane Copolymers
新型HTPB/PEG聚氨酯共聚物的合成及性能研究
  • DOI:
    10.4028/www.scientific.net/amm.66-68.170
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanling Luo;Yan Miao;Feng Xu
  • 通讯作者:
    Feng Xu
Complexity analysis of remanufacturing duopoly game with different competition strategies and heterogeneous players
不同竞争策略、异质参与者的再制造双寡头博弈复杂性分析
  • DOI:
    10.1007/s11071-015-2218-7
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lian Shi;Zhaohan Sheng;Feng Xu
  • 通讯作者:
    Feng Xu

Feng Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Xu', 18)}}的其他基金

Collaborative Research: Observational and Numerical Modeling Studies of Rain Microphysics
合作研究:雨微物理的观测和数值模拟研究
  • 批准号:
    1901593
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
On questions around reconstruction program
关于重建计划的问题
  • 批准号:
    1764157
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Subfactors and conformal field theory
子因子和共形场论
  • 批准号:
    1069309
  • 财政年份:
    2011
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Subfactors and conformal field theories
子因子和共形场论
  • 批准号:
    0800521
  • 财政年份:
    2008
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Operator Algebras and Algebraic Conformal Field Theories
算子代数和代数共形场论
  • 批准号:
    0457651
  • 财政年份:
    2005
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Operator Algebras and Conformal Field Theories
算子代数和共形场论
  • 批准号:
    0200770
  • 财政年份:
    2002
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant

相似海外基金

Coset growth in finitely generated groups
有限生成群中的陪集增长
  • 批准号:
    551653-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 6.63万
  • 项目类别:
    University Undergraduate Student Research Awards
Study of Linear Codes for Coset Coding with Highest Security
最高安全性陪集编码线性码的研究
  • 批准号:
    26289116
  • 财政年份:
    2014
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Data and coset dependent spreading for DS-CDMA systems based on coding techniques
基于编码技术的 DS-CDMA 系统的数据和陪集相关扩展
  • 批准号:
    227724-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Coset spaces and Hecke algebra actions
陪集空间和赫克代数动作
  • 批准号:
    DP120101942
  • 财政年份:
    2012
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Projects
Data and coset dependent spreading for DS-CDMA systems based on coding techniques
基于编码技术的 DS-CDMA 系统的数据和陪集相关扩展
  • 批准号:
    227724-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Data and coset dependent spreading for DS-CDMA systems based on coding techniques
基于编码技术的 DS-CDMA 系统的数据和陪集相关扩展
  • 批准号:
    227724-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Data and coset dependent spreading for DS-CDMA systems based on coding techniques
基于编码技术的 DS-CDMA 系统的数据和陪集相关扩展
  • 批准号:
    227724-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Data and coset dependent spreading for DS-CDMA systems based on coding techniques
基于编码技术的 DS-CDMA 系统的数据和陪集相关扩展
  • 批准号:
    227724-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Model building on a coset space
在陪集空间上建立模型
  • 批准号:
    20540251
  • 财政年份:
    2008
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
  • 批准号:
    9623125
  • 财政年份:
    1996
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了