On questions around reconstruction program
关于重建计划的问题
基本信息
- 批准号:1764157
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum Mechanics was one of crowning achievements of modern physics and has important applications in daily life such as X-ray, TV, etc. More recently it is the driving principle behind building a quantum computer. The theory of operator algebras was introduced by John von Neumann in order to provide a proper mathematical framework for Quantum Mechanics. The non-commutativity which is a key feature of Quantum Mechanics, is an important aspect of operator algebras. Vaughan Jones's subfactor theory is built on this non-commutative framework. Conformal field theory (CFT) is a theory describing critical phenomena in condensed matter physics, and it also plays an important role in string theory. In recent years there have been remarkable interactions between subfactors and conformal field theory that have led to many interesting mathematical issues. The aim of this project is to find solutions to some of the important mathematical issues that surface in this context which have a wide range of applications in both mathematics and quantum physics.Subfactor theory provides an entry point into a world of mathematics and physics containing large parts of conformal field theory, quantum algebras and low dimensional topology. The research objective of this project is to develop further the connection between these subjects, and to find applications in the other area of mathematics. The project will rely on operator algebraic and subfactor techniques developed in studying CFT, including insights about old and new problems provided by the general framework of subfactors. The project's focus will be on the questions around the reconstruction program which are strongly motivated by recent construction of subfactors. In some cases there are strong indications that the subfactors come from CFT in certain ways that have been well established based on principal investigator's work. Solutions of the problems that are proposed would have important applications in diverse areas of mathematics. Results will be disseminated as research publications and presentations at professional meetings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子力学是现代物理学的最高成就之一,在日常生活中有着重要的应用,如X射线,电视等。算子代数理论是由约翰·冯·诺依曼提出的,目的是为量子力学提供一个合适的数学框架。 非对易性是量子力学的一个重要特征,也是算子代数的一个重要方面。 沃恩·琼斯的子因子理论就是建立在这个非对易框架之上的。共形场论(CFT)是描述凝聚态物理中临界现象的理论,在弦理论中也起着重要的作用。近年来,子因子和共形场论之间的相互作用引起了许多有趣的数学问题。这个项目的目的是找到一些重要的数学问题的解决方案,表面在这方面有广泛的应用在数学和量子物理。子因子理论提供了一个切入点,进入一个世界的数学和物理包含大部分的共形场论,量子代数和低维拓扑。该项目的研究目标是进一步发展这些学科之间的联系,并在数学的其他领域找到应用。该项目将依赖于研究CFT中开发的算子代数和子因子技术,包括子因子一般框架提供的关于新旧问题的见解。该项目的重点将是围绕重建计划的问题,这些问题是由最近的子因素建设强烈推动的。在某些情况下,有强烈的迹象表明,子因素来自CFT在某些方面已经建立了基于主要研究者的工作。所提出的问题的解决方案将在数学的不同领域有重要的应用。研究成果将作为研究出版物和专业会议上的演讲进行传播。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some Results On Relative Entropy in Quantum Field Theory
- DOI:10.1007/s00220-019-03367-x
- 发表时间:2018-10
- 期刊:
- 影响因子:2.4
- 作者:Fengjun Xu
- 通讯作者:Fengjun Xu
Von Neumann Entropy in QFT
QFT 中的冯诺依曼熵
- DOI:10.1007/s00220-020-03702-7
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Longo, Roberto;Xu, Feng
- 通讯作者:Xu, Feng
On relative entropy and global index
关于相对熵和全局指数
- DOI:10.1090/tran/7989
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Xu, Feng
- 通讯作者:Xu, Feng
Relative entropy in CFT
CFT 中的相对熵
- DOI:10.1016/j.aim.2018.08.015
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Longo, Roberto;Xu, Feng
- 通讯作者:Xu, Feng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Xu其他文献
リスク学入門(2)経済からみたリスク
风险科学导论(二)经济学视角下的风险
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Yoshiro Higano;Feng Xu;JingJing Yan;Takeshi Mizunoya;Huanzheng Du;橘木俊詔編 - 通讯作者:
橘木俊詔編
An Evaluation of Regional Environment Tax Policy for Lake Kasumigaura
霞浦湖区域环境税政策评价
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Takeshi Mizunoya;Susumu Uchida;Feng Xu;Keiko Nakayama;Yoshiro Higano - 通讯作者:
Yoshiro Higano
Dual-regularized one-class collaborative filtering with implicit feedback
具有隐式反馈的双正则一类协同过滤
- DOI:
10.1007/s11280-018-0574-1 - 发表时间:
2018-05 - 期刊:
- 影响因子:3.7
- 作者:
Yuan Yao;Hanghang Tong;Guo Yan;Feng Xu;Xiang Zhang;Boleslaw K Szymanski;Jian Lu - 通讯作者:
Jian Lu
Study on Synthesis and Properties of Novel HTPB/PEG Polyurethane Copolymers
新型HTPB/PEG聚氨酯共聚物的合成及性能研究
- DOI:
10.4028/www.scientific.net/amm.66-68.170 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yanling Luo;Yan Miao;Feng Xu - 通讯作者:
Feng Xu
Complexity analysis of remanufacturing duopoly game with different competition strategies and heterogeneous players
不同竞争策略、异质参与者的再制造双寡头博弈复杂性分析
- DOI:
10.1007/s11071-015-2218-7 - 发表时间:
2015-06 - 期刊:
- 影响因子:0
- 作者:
Lian Shi;Zhaohan Sheng;Feng Xu - 通讯作者:
Feng Xu
Feng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Xu', 18)}}的其他基金
Collaborative Research: Observational and Numerical Modeling Studies of Rain Microphysics
合作研究:雨微物理的观测和数值模拟研究
- 批准号:
1901593 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Operator Algebras and Algebraic Conformal Field Theories
算子代数和代数共形场论
- 批准号:
0457651 - 财政年份:2005
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Operator Algebras and Conformal Field Theories
算子代数和共形场论
- 批准号:
0200770 - 财政年份:2002
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Subfactors from Coset Conformal Field Theories
陪集共形场论的子因子
- 批准号:
9820935 - 财政年份:1999
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
相似国自然基金
基于硅基一维纳米线的Gate-all-around纳米晶体管的研究
- 批准号:61176101
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
Reconstruction of event record around Tokara Islands based on the survey of marine/coastal sediment
基于海洋/海岸沉积物调查重建吐噶喇群岛周边事件记录
- 批准号:
23K13180 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improved Diagnostic MRI around Metallic Implants
改进金属植入物周围的 MRI 诊断
- 批准号:
10367211 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Improved Diagnostic MRI around Metallic Implants
改进金属植入物周围的 MRI 诊断
- 批准号:
10558660 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Reconstruction of geomagnetic field and its influence on history of the Earth and life using magnetic microscopy around the formation of inner core
利用磁显微镜重建地磁场及其对地球历史和生命的影响围绕内核的形成
- 批准号:
21H04523 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Empirical Reconstruction of Postwar Okinawan Studies:Pursuing International Relations and Intellectual Linkage around Nakahara Zenchu Papers.
战后冲绳研究的实证重建:围绕中原善中论文追寻国际关系和知识联系。
- 批准号:
20K00985 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative study of reconstruction support and institutions around community restructuring
围绕社区重建的重建支持和机构比较研究
- 批准号:
15K03875 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toward Reconstruction of the History of International Relations around Japan of the Meiji Restoration Period: From the Perspective of East Asian Comparison and the World History
明治维新时期日本周边国际关系史的重建:东亚比较与世界史的视角
- 批准号:
15K16816 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Global environmental change reconstruction based on coral skeletal records around Japanese Islands
基于日本列岛珊瑚骨骼记录的全球环境变化重建
- 批准号:
15H02813 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Between Lifting the Taboo on Child Sexuality and Removing the Boundaries Around Child and Adult Sexuality On the reconstruction of the interplay between sexual liberalisation, liberalised child education, the paedophile movement and the educational and so
在解除儿童性禁忌与消除儿童与成人性的界限之间论性自由化、儿童教育自由化、恋童运动与教育等之间相互作用的重建
- 批准号:
257571150 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Research Grants
Development and Translation of Novel UTE-MuSIC MR Sequence to Image Around Metal
新型 UTE-MuSIC MR 序列的开发和转化为金属周围的图像
- 批准号:
8594503 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别: