Mathematical Problems in Polymer Rheology
聚合物流变学中的数学问题
基本信息
- 批准号:9870220
- 负责人:
- 金额:$ 8.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-15 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research addresses fundamental mathematical issues in polymer rheology and continuum mechanics. One area of research is the study of high Weissenberg number asymptotics of viscoelastic flows. This concerns the limit when elastic effects are strong. In this case, the mathematical solutions of the equations often show singular features such as singularities at corners and boundary layers at walls and separating streamlines. Failure to resolve these singularities continues to be one of the major impediments towards successful numerical simulation of viscoelastic flows. The proposed research will explore the application of asymptotic methods in this field to clarify the analytical nature of the solution. A second area of the proposed research concerns flow instabilities. Specific problems to be studied are the process of fiber spinning, and the related problems of film casting and film blowing. One aspect of these flows which has received only scant attention in theoretical studies is the liquid to solid transition and the associated dynamics of the freezing point. The proposed research will study this problem with the objective of elucidating stability boundaries and qualitative dynamics as well as basic mathematical issues such as the well-posedness of the free boundary value problem and the relation between stability and spectral properties. Another topic of the proposal is the investigation of the nature of the spectrum which arises in studying the linearized stability of viscoelastic shear flows. Finally, the proposal addresses a question in control of linear elastic solids by imbedded actuators, namely the question which configurations of the boundary can be achieved with certain types of controls. This work is joint with David Russell. The proposed research in fluid dynamics has significant implications for materials science. In the processing of polymeric liquids, e.g. the manufacture of plastics, the flow of the liquid during processing conditions often has a major impact on the quality and properties of the product. The understanding and simulation of these flows is therefore of importance. The proposal addresses mathematical singularities in the high elasticity limit which pose a major challenge to numerical simulations and need to be resolved at a fundamental level if further progress is to be made. Another aspect of the proposal is the study of flow instabilities. Such instabilities can arise in processing operations where they often lead to unacceptable products. Finally, the proposal addresses new mathematical questions which arises in the study of "smart" materials.
拟议的研究解决了聚合物流变学和连续介质力学中的基本数学问题。其中一个研究领域是粘弹性流动的高Weissenberg数渐近性质的研究。这涉及到当弹性效应很强时的极限。在这种情况下,方程的数学解经常表现出奇异特征,如拐角处的奇异性、壁面的边界层奇异性和分离的流线。未能解决这些奇异性仍然是粘弹性流动数值模拟成功的主要障碍之一。拟议的研究将探索渐近方法在这一领域的应用,以澄清解的分析性质。拟议研究的第二个领域涉及流动不稳定性。要研究的具体问题是纤维纺丝的过程,以及与之相关的薄膜浇铸和吹膜问题。这些流动的一个方面在理论研究中只得到很少的关注,那就是液体到固体的转变以及与之相关的冰点动力学。这项研究将研究这一问题,目的是阐明稳定性、边界和定性动力学,以及基本的数学问题,如自由边值问题的适定性以及稳定性和谱性质之间的关系。该建议的另一个主题是研究粘弹性剪切流的线性化稳定性时产生的谱的性质。最后,该方案解决了嵌入执行器控制线弹性固体的问题,即通过某些类型的控制可以实现哪些边界构型的问题。这项工作是与大卫·罗素共同完成的。提出的流体力学研究对材料科学具有重要意义。在聚合物液体的加工中,例如塑料的制造,在加工条件下液体的流动常常对产品的质量和性能产生重大影响。因此,对这些流动的理解和模拟具有重要意义。该提案涉及高弹性极限中的数学奇点,这些奇点对数值模拟构成了重大挑战,如果要取得进一步进展,就需要从根本上加以解决。该提案的另一个方面是对流动不稳定性的研究。这种不稳定可能出现在加工操作中,在那里它们经常导致不合格的产品。最后,该提案解决了“智能”材料研究中出现的新的数学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Renardy其他文献
Pattern selection in the Bénard problem for a viscoelastic fluid
- DOI:
10.1007/bf00944744 - 发表时间:
1992-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Michael Renardy;Yuriko Renardy - 通讯作者:
Yuriko Renardy
Kelvin–Helmholtz instability with a free surface
- DOI:
10.1007/s00033-012-0270-4 - 发表时间:
2012-10-30 - 期刊:
- 影响因子:1.600
- 作者:
Didier Bresch;Michael Renardy - 通讯作者:
Michael Renardy
Shape Control by Collinear Actuators
- DOI:
10.1007/s002050000120 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:2.400
- 作者:
Michael Renardy - 通讯作者:
Michael Renardy
Stability of Creeping Flows of Maxwell Fluids
- DOI:
10.1007/s00205-010-0353-3 - 发表时间:
2010-08-20 - 期刊:
- 影响因子:2.400
- 作者:
Michael Renardy - 通讯作者:
Michael Renardy
On bounded solutions of a classical yang-mills equation
- DOI:
10.1007/bf02193558 - 发表时间:
1980-09-01 - 期刊:
- 影响因子:2.600
- 作者:
Michael Renardy - 通讯作者:
Michael Renardy
Michael Renardy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Renardy', 18)}}的其他基金
Analysis of Viscoelastic and Compressible Flows
粘弹性和可压缩流分析
- 批准号:
1514576 - 财政年份:2015
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Analysis of Complex Fluids
复杂流体的数学分析
- 批准号:
1008426 - 财政年份:2010
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Problems in non-Newtonian and free surface flows
非牛顿流和自由表面流中的问题
- 批准号:
0405810 - 财政年份:2004
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Problems in Fluid Dynamics and Elasticity
流体动力学和弹性问题
- 批准号:
0103813 - 财政年份:2001
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0077177 - 财政年份:2000
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
- 批准号:
9622735 - 财政年份:1996
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Viscoelastic and Multilayer Flows
数学科学:粘弹性和多层流问题
- 批准号:
9306635 - 财政年份:1993
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Problems in Continuum Mechanics
数学科学:连续介质力学中的数学问题
- 批准号:
9008497 - 财政年份:1990
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Analysis of ViscoelasticMaterials
数学科学:粘弹性材料的数学分析
- 批准号:
8796241 - 财政年份:1986
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
相似海外基金
Research on corrosion problems of SUS 304 stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells
聚合物电解质膜燃料电池双极板SUS 304不锈钢腐蚀问题研究
- 批准号:
22K04770 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Serious Problems of Conventional Methods in the Evaluation of Ultimate Mechanical Property of Polymer Crystals as a Guiding Principle for the Development of Ultra-Strong Polymers
研究聚合物晶体极限力学性能评价中传统方法的严重问题,作为超强聚合物开发的指导原则
- 批准号:
22H02151 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new concept for ultrasonic flow enhancement in injection moulding, to eliminate polymer leakage problems
注塑成型中超声波流动增强的新概念,可消除聚合物泄漏问题
- 批准号:
710417 - 财政年份:2013
- 资助金额:
$ 8.1万 - 项目类别:
GRD Proof of Concept
Theoretical, experimental and numerical study of problems related to polymer dynamics and/or nanofluidics
与聚合物动力学和/或纳米流体相关的问题的理论、实验和数值研究
- 批准号:
46434-2002 - 财政年份:2006
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual
Theoretical, experimental and numerical study of problems related to polymer dynamics and/or nanofluidics
与聚合物动力学和/或纳米流体相关的问题的理论、实验和数值研究
- 批准号:
46434-2002 - 财政年份:2005
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual
Theoretical, experimental and numerical study of problems related to polymer dynamics and/or nanofluidics
与聚合物动力学和/或纳米流体相关的问题的理论、实验和数值研究
- 批准号:
46434-2002 - 财政年份:2004
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual
Theoretical, experimental and numerical study of problems related to polymer dynamics and/or nanofluidics
与聚合物动力学和/或纳米流体相关的问题的理论、实验和数值研究
- 批准号:
46434-2002 - 财政年份:2003
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual
Theoretical, experimental and numerical study of problems related to polymer dynamics and/or nanofluidics
与聚合物动力学和/或纳米流体相关的问题的理论、实验和数值研究
- 批准号:
46434-2002 - 财政年份:2002
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual
U.S.-Turkey Workshop of Novel Applications of Light Scattering to Problems in Polymer Physics: Polymer Coil Collapse in the Poor Solvent Regime (May 1994,Gebze,Turkey)
美国-土耳其光散射在高分子物理问题中的新应用研讨会:不良溶剂体系中的聚合物线圈塌陷(1994 年 5 月,土耳其盖布泽)
- 批准号:
9320365 - 财政年份:1994
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Critical Phenomena and Related Problems in Polymer Physics, Peterborough, Ontario, 15-16 August 1991
高分子物理中的关键现象和相关问题,安大略省彼得伯勒,1991 年 8 月 15-16 日
- 批准号:
115431-1990 - 财政年份:1991
- 资助金额:
$ 8.1万 - 项目类别:
Workshops and Seminars (H)