Problems in Fluid Dynamics and Elasticity
流体动力学和弹性问题
基本信息
- 批准号:0103813
- 负责人:
- 金额:$ 10.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research is proposed on the following topics:1. Breakup of liquid jets: This research will mathematically analyze the capillary breakup of jets of Newtonian and viscoelastic liquids. The effect of polymer additives in suppressing breakup is well known and exploited both in nature (spider webs) and in technology (control of drops sizes in spraying of liquids). The research will concentrate on the asymptotics of breakup and compare various constitutive theories.2. Stability of viscoelastic flows: Elastic instabilities have been investigated extensively over the past ten years. Such instabilities often pose limits for polymer processing conditions. In the numerical investigation of instabilities in complex flows, continuous spectra which are poorly resolved pose a significant challenge. The research is aimed at using analytical techniques to determine the location of these continuous spectra.3. Shape control in elasticity: An elastic medium is controlled by actuators which can supply a stress of a given type. The research will investigate the question whether such controls can achieve a given shape of the medium.4. Numerical simulation of two-fluid flows: The research will continue work on simulation of flows of two liquids using a volume of fluid code. The following three problems will be investigated: a) Formation of ``staircase" structures on impacting drops due to capillary waves. b) Tipstreaming in drop breakup under shear when surfactants are present. c) Effect of normal stresses on breakup of viscoelastic drops under shear.The proposed research addresses fundamental issues which arise in the processing anduse of polymeric liquids, the control of deformations of elastic solids and theformation of emulsions by shear mixing. The proposed topics include a comparison ofthe qualitative behavior various models of polymeric fluids in jet breakup, thestability of polymeric flows, the question which shapes of an elastic medium canbe achieved by a given type of control, and the development of numerical methods fortwo-fluid flows.
本文拟围绕以下主题进行研究:1.液体射流的破裂:这项研究将进行数学分析 牛顿流体和粘弹性流体射流的毛细管破裂。效果 聚合物添加剂在抑制破碎中的应用是众所周知的, 在自然界(蜘蛛网)和技术(控制喷雾中的液滴大小)中 液体)。研究将集中在分裂的渐近性, 比较各种本构理论.粘弹性流动的稳定性: 在过去的十年里进行了广泛的调查。这种不稳定性往往 对聚合物加工条件造成限制。在数值研究中 复杂流动中的不稳定性,连续光谱, 构成了一个重大挑战。该研究旨在利用分析 技术来确定这些连续光谱的位置。弹性中的形状控制:弹性介质由 可以提供给定类型的应力的致动器。这项研究将 调查这样的控制是否可以实现给定的形状的问题, 4.中间二流体流动的数值模拟:研究将继续 使用流体体积代码模拟两种液体的流动。的 将研究以下三个问题: (a)在撞击液滴上形成"楼梯”结构, 毛细血管波 B)当表面活性剂在剪切下的液滴破碎中的尖端流 礼物 c)法向应力对粘弹性液滴破裂的影响, 提出的研究解决了在聚合物液体的加工和使用中出现的基本问题,弹性固体变形的控制和通过剪切混合形成乳液。所提出的主题包括:聚合物流体在射流破碎中的各种模型的定性行为的比较,聚合物流动的稳定性,通过给定类型的控制可以实现弹性介质的形状的问题,以及双流体流动的数值方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Renardy其他文献
Pattern selection in the Bénard problem for a viscoelastic fluid
- DOI:
10.1007/bf00944744 - 发表时间:
1992-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Michael Renardy;Yuriko Renardy - 通讯作者:
Yuriko Renardy
Kelvin–Helmholtz instability with a free surface
- DOI:
10.1007/s00033-012-0270-4 - 发表时间:
2012-10-30 - 期刊:
- 影响因子:1.600
- 作者:
Didier Bresch;Michael Renardy - 通讯作者:
Michael Renardy
Shape Control by Collinear Actuators
- DOI:
10.1007/s002050000120 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:2.400
- 作者:
Michael Renardy - 通讯作者:
Michael Renardy
Stability of Creeping Flows of Maxwell Fluids
- DOI:
10.1007/s00205-010-0353-3 - 发表时间:
2010-08-20 - 期刊:
- 影响因子:2.400
- 作者:
Michael Renardy - 通讯作者:
Michael Renardy
On bounded solutions of a classical yang-mills equation
- DOI:
10.1007/bf02193558 - 发表时间:
1980-09-01 - 期刊:
- 影响因子:2.600
- 作者:
Michael Renardy - 通讯作者:
Michael Renardy
Michael Renardy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Renardy', 18)}}的其他基金
Analysis of Viscoelastic and Compressible Flows
粘弹性和可压缩流分析
- 批准号:
1514576 - 财政年份:2015
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
Mathematical Analysis of Complex Fluids
复杂流体的数学分析
- 批准号:
1008426 - 财政年份:2010
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
Problems in non-Newtonian and free surface flows
非牛顿流和自由表面流中的问题
- 批准号:
0405810 - 财政年份:2004
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0077177 - 财政年份:2000
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
Mathematical Problems in Polymer Rheology
聚合物流变学中的数学问题
- 批准号:
9870220 - 财政年份:1998
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
- 批准号:
9622735 - 财政年份:1996
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Viscoelastic and Multilayer Flows
数学科学:粘弹性和多层流问题
- 批准号:
9306635 - 财政年份:1993
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Problems in Continuum Mechanics
数学科学:连续介质力学中的数学问题
- 批准号:
9008497 - 财政年份:1990
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Analysis of ViscoelasticMaterials
数学科学:粘弹性材料的数学分析
- 批准号:
8796241 - 财政年份:1986
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
相似国自然基金
随机进程代数模型的Fluid逼近问题研究
- 批准号:61472343
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
- 批准号:11275269
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2021
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2020
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of anisotropy and singular limit problems in the equations of geophysical fluid dynamics
地球物理流体动力学方程各向异性和奇异极限问题的数学分析
- 批准号:
19K03584 - 财政年份:2019
- 资助金额:
$ 10.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2019
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
UNSflow: A low-order, open-source solver for problems that involve unsteady and nonlinear fluid dynamics
UNSflow:一个低阶开源求解器,用于解决涉及不稳定和非线性流体动力学的问题
- 批准号:
EP/R008035/1 - 财政年份:2018
- 资助金额:
$ 10.49万 - 项目类别:
Research Grant
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2018
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2016
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
Real analytical and numerical approach to non-stationary problems of fluid dynamics
流体动力学非平稳问题的真实分析和数值方法
- 批准号:
15K04946 - 财政年份:2015
- 资助金额:
$ 10.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)