KDI: Statistical Learning and Its Constraints
KDI:统计学习及其约束
基本信息
- 批准号:9873477
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-12-01 至 2002-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Both humans and non-human primates show remarkable learning abilities. However, these abilities are often limited to certain domains, developmental periods, or behavioral contexts. For example, nearly all humans acquire one or more complex linguistic systems-that is, languages -- but not all humans acquire complex musical systems. Similarly, non-human primates are exceptionally adept at learning to forage for and categorize different types of food, but are severely limited in acquiring complex communication systems. Also, both humans and non-human primates appear to learn best in several domains during early periods of development. Thus, learning is nearly always characterized by specializations, rather than by general-purpose mechanisms. Understanding the constraints on learning will contribute to basic research, by accounting for domain- and species-specializations, and to applied research, by refining our understanding of which domains, ages, and contexts are optimal for humanlearners.The goal of the present research project is to explore the ability of human adults, children, infants, and non-human primates (Tamarins) to learn rapid sequential events. A prime example of a rapid sequential event is language, in which sounds are combined to form words, and words are combined to form sentences. Recent findings have demonstrated that human adults and infants can rapidly extract and remember very detailed 'statistics' of linguistic input, such as the frequency and probability that one syllable will follow another. In our proposed research, we will employ miniature artificial 'languages' which simulate some of the structural properties of natural languages, but which can be built with equivalent structures across different domains (speech sequences, tone sequences, visual sequences, motor sequences). At issue is the facility humans and non-human primates show for the extraction of statistical structure from these different learning materials. Are they equally sensitive to the distributions of elements and higher order structure in the materials? Do learning abilities differ across learners of different ages and species, and across different structures and domains?In addition to behavioral experiments with humans and non-human primates, a series of computational studies will allow us to investigate the formal properties of learning mechanisms, in order to ask what architectural and neural differences might underlie such differences in learning abilities. What kinds of computational architectures can learn the types of regularities and patterns that human infants learn? Is the inability of adults or non-human primates to learn some types of complex sequential events due to the absence of a learning device specialized for that domain, or could small differences in computation and/or memory lead to large differences in learning outcome?
人类和非人类灵长类动物都表现出非凡的学习能力。 然而,这些能力往往局限于某些领域,发展阶段或行为环境。 例如,几乎所有的人都获得一个或多个复杂的语言系统,也就是语言,但不是所有的人都获得复杂的音乐系统。 同样,非人类灵长类动物非常擅长学习搜寻和分类不同类型的食物,但在获得复杂的通信系统方面受到严重限制。 此外,人类和非人类灵长类动物似乎在发育的早期阶段在几个领域学习得最好。 因此,学习几乎总是以专门化为特征,而不是以通用机制为特征。 了解学习的限制将有助于基础研究,占领域和物种的专业化,并应用研究,通过完善我们的理解,哪些领域,年龄和上下文是最佳的humanlearners.The本研究项目的目标是探索人类成人,儿童,婴儿和非人类灵长类动物(绢毛猴)学习快速顺序事件的能力。 快速顺序事件的一个主要例子是语言,其中声音组合成单词,单词组合成句子。 最近的研究结果表明,人类成年人和婴儿可以快速提取和记住非常详细的语言输入“统计数据”,例如一个音节跟随另一个音节的频率和概率。 在我们提出的研究中,我们将采用微型人工“语言”,它模拟自然语言的一些结构特性,但可以在不同的领域(语音序列,音调序列,视觉序列,运动序列)建立等效结构。 争论的焦点是人类和非人类灵长类动物从这些不同的学习材料中提取统计结构的能力。 它们对材料中元素的分布和高阶结构是否同样敏感? 不同年龄、不同物种、不同结构和领域的学习者的学习能力是否存在差异?除了人类和非人类灵长类动物的行为实验,一系列的计算研究将使我们能够研究学习机制的形式属性,以询问什么样的结构和神经差异可能是这种学习能力差异的基础。什么样的计算架构可以学习人类婴儿学习的语言类型和模式? 成年人或非人类灵长类动物无法学习某些类型的复杂序列事件,是因为缺乏专门针对该领域的学习设备,还是计算和/或记忆的微小差异会导致学习结果的巨大差异?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Aslin其他文献
Richard Aslin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Aslin', 18)}}的其他基金
Development of language-related neural networks using multimodal imaging
使用多模态成像开发语言相关神经网络
- 批准号:
2148012 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
EAGER: COLLABORATIVE RESEARCH: Developmental mechanisms of perception and language in the infant brain
渴望:合作研究:婴儿大脑感知和语言的发育机制
- 批准号:
1514351 - 财政年份:2015
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Acquisition of a magnetic resonance imaging system to assess brain plasticity
获取磁共振成像系统来评估大脑可塑性
- 批准号:
0215700 - 财政年份:2002
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Development of Visual Stability in Human Infants
人类婴儿视觉稳定性的发展
- 批准号:
9108723 - 财政年份:1991
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Development of the Visual System in Human Infants
人类婴儿视觉系统的发育
- 批准号:
8013075 - 财政年份:1980
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Conference on Genetic and Experiential Factors in Perceptual Development; Nashville, Indiana; October 7-10, 1979
知觉发展中的遗传和经验因素会议;
- 批准号:
7906204 - 财政年份:1979
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Development of Human Eye Movement Control Systems
人眼运动控制系统的发展
- 批准号:
7704580 - 财政年份:1977
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
相似海外基金
Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
- 批准号:
2342215 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886365 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886852 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant