Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging

智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究

基本信息

  • 批准号:
    2342215
  • 负责人:
  • 金额:
    $ 39.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-15 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This project is developing user-friendly tools to guide optimal choices about clean energy, especially regarding charging electric vehicles (EVs). Efforts focus on creating simple and efficient computer algorithms capable of learning from real-world data to suggest ideal charging times and conditions for EVs. The significance lies in users adapting to increasingly complex energy environments, adopting more sustainable options and behaviors, and gaining more control over energy use. The project centers on EVs as integral to reducing carbon emissions from transportation. Despite significant advancements in battery and charging technologies, there are many challenges in planning how EVs are charged, and the situation is poised to worsen with the expected increasing penetration of electrified transportation. The aim is to ensure these tools will be accessible to all EV users, focusing not only on making charging recommendations that promote the use of renewable energy but also on considering individual preferences and potential benefits to the entire energy system. The ultimate objective is to simplify decision-making, making it easier for users to manage energy consumption in optimal ways without feeling overwhelmed. Advanced statistical techniques are employed, utilizing highly efficient computer algorithms that will ensure speed, flexibility, interpretability, and real-world policy relevance. The proposed system adapts and learns charging preferences in real-time, providing energy management recommendations in the context of coordinated EV charging while considering factors such as electricity demand, pricing, and grid stability. The methodical modular Markov chain fast and scalable sampler of the proposed incentive-compatible recommender system is designed by integrating: an expansion of Ultimate Pólya-Gamma data augmentation for multi-index choice models to create conjugacy where it does not exist, amortized and non-factorized variational inference for efficiency, Choquet aggregation for complex nonparametric tradeoffs across service features (relaxing linear compensatory behavior), Bayes endogeneity controls, Bayesian optimization for tuning hyperparameters and for integration with a system equilibrium algorithm, and flexible semiparametric representation of heterogeneity in preferences and motives between and within strategic agents. The research team implements the project through an actual residential program for coordinated scheduling of electric-vehicle charging, such as avoiding in-force price endogeneity and constraints via self-selection price discrimination through discrete targeted bundles. In simpler terms, a helpful guide is created for individuals driving electric vehicles, suggesting ideal charging times and needs based on their preferences and driving patterns. Smart technology is employed to gather information, enabling the provision of personalized suggestions to users. The impact of the project extends beyond individual assistance, contributing to the overall sustainability of energy systems and providing valuable tools for energy-related organizations, utilities, and policymakers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目正在开发用户友好的工具,以指导关于清洁能源的最佳选择,特别是关于充电电动汽车(EVS)。努力的重点是创造简单而高效的计算机算法,能够从真实世界的数据中学习,为电动汽车提供理想的充电时间和条件。其意义在于用户适应日益复杂的能源环境,采用更可持续的选择和行为,并获得对能源使用的更多控制。该项目以电动汽车为中心,将其作为减少交通运输碳排放的不可或缺的一部分。尽管电池和充电技术取得了重大进步,但在规划电动汽车充电方式方面仍存在许多挑战,随着电动交通的预期普及率不断提高,情况可能会变得更糟。其目的是确保所有电动汽车用户都可以使用这些工具,不仅专注于提出促进使用可再生能源的充电建议,而且还考虑到个人偏好和对整个能源系统的潜在好处。最终目标是简化决策,使用户更容易以最佳方式管理能源消耗,而不会感到不知所措。采用先进的统计技术,利用高效的计算机算法,确保速度、灵活性、可解释性和现实世界的政策相关性。该系统实时适应和学习充电偏好,在考虑电力需求、定价和电网稳定性等因素的同时,在协调电动汽车充电的背景下提供能源管理建议。提出的激励相容推荐系统的方法论模块化马尔可夫链快速和可扩展采样器的设计是通过集成:对多指标选择模型的终极Pólya-Gamma数据增强进行扩展以在不存在的情况下创建共轭、用于效率的分期和非因式变分推理、用于服务特征之间的复杂非参数权衡(放松线性补偿行为)的Choket聚集、贝叶斯内生性控制、用于调整超参数的贝叶斯优化以及用于与系统均衡算法集成的贝叶斯优化以及策略代理之间和策略代理内部偏好和动机的异质性的灵活半参数表示。研究团队通过一个用于电动汽车充电协调调度的实际住宅项目来实施该项目,例如通过离散的目标捆绑避免有效的价格内生性和通过自我选择的价格歧视而产生的约束。简而言之,为驾驶电动汽车的个人创建了一个有用的指南,根据他们的偏好和驾驶模式建议理想的充电时间和需求。智能技术被用于收集信息,从而能够向用户提供个性化的建议。该项目的影响超越了个人援助,有助于能源系统的整体可持续性,并为能源相关组织、公用事业公司和政策制定者提供了宝贵的工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Daziano其他文献

Ricardo Daziano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Daziano', 18)}}的其他基金

RAPID Choices under Short-Term Threats and Behavioral Response to Social Distancing in the COVID-19 Pandemic
COVID-19 大流行中短期威胁下的快速选择以及对社交距离的行为反应
  • 批准号:
    2031841
  • 财政年份:
    2020
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Quantification and Analysis of the Decisions of Economically and Environmentally Informed Travelers in Urban Networks
城市网络中经济和环境知情旅行者决策的量化和分析
  • 批准号:
    1462289
  • 财政年份:
    2015
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
CAREER: Advanced demand estimators for energy-efficiency in personal transportation
职业:个人交通能源效率的高级需求估算器
  • 批准号:
    1253475
  • 财政年份:
    2013
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
  • 批准号:
    10859277
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
Interventions that Address Structural Racism to Reduce Kidney Health Disparities Research Coordinating Center
解决结构性种族主义以减少肾脏健康差异的干预措施 研究协调中心
  • 批准号:
    10761858
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
  • 批准号:
    10364871
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Optimized workflows for structural variant analysis of the Kids First genomes using short and long reads
使用短读长和长读长对 Kids First 基因组进行结构变异分析的优化工作流程
  • 批准号:
    10432507
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Cross-platform structural variant discovery with deep learning
通过深度学习跨平台结构变体发现
  • 批准号:
    10686879
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Cross-platform structural variant discovery with deep learning
通过深度学习跨平台结构变体发现
  • 批准号:
    10453237
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
  • 批准号:
    10354418
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Linking human islet structural heterogeneity to beta cell state
将人类胰岛结构异质性与 β 细胞状态联系起来
  • 批准号:
    10584317
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Optimized workflows for structural variant analysis of the Kids First genomes using short and long reads
使用短读长和长读长对 Kids First 基因组进行结构变异分析的优化工作流程
  • 批准号:
    10602532
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
Structural estimation on the statistical learning model : Application on the competition and social policy for the digital economy
统计学习模型的结构估计:在数字经济竞争和社会政策中的应用
  • 批准号:
    22K01485
  • 财政年份:
    2022
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了