KDI: Learning Through Writing Using Adaptive Tutoring Systems: Modeling Knowledge Representations from Open-Ended Questions

KDI:使用自适应辅导系统通过写作进行学习:从开放式问题中建模知识表示

基本信息

  • 批准号:
    9873491
  • 负责人:
  • 金额:
    $ 50.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-10-01 至 2003-09-30
  • 项目状态:
    已结题

项目摘要

This project combines relevant, recent findings from psychology, education, artificial intelligence, and computational linguistics in learning and knowledge representation and applies them to the development of intelligent tutoring systems (ITSs). Learning theory can be extended through the study of the evolution of different types of knowledge representations together with procedural representations. Thus, this research will examine learning, the change in students' knowledge representations, as they integrate multiple sources of information.Although ITSs have been developed to examine learning for well-defined problems requiring a limited set of possi-ble responses, ITSs have had problems evaluating open-ended questions that require the student to provide natural language responses. However, asking students to provide written answers to essay questions can provide a much richer representation of student knowledge and also improving students' writing abilities. Thus, this research will demonstrate that ITSs can be developed which extend beyond simple responses and that these ITSs can adapt more readily to provide individualized instruction to students. In order to develop these ITSs, this research uses the computational linguistic technique Latent Semantic Analysis (LSA) to model student knowledge representations from essay-based answers within tutoring systems.As students' knowledge representations change, so too should their essay responses, including more knowledge and improving in quality. Therefore such an ITS can provide the necessary feedback for student improvement (both in domain knowledge and in writing skill). In addition, the ITS can initially assess the students' ability and provide extra help to the students with help gradually fading as the student gains more knowledge (e.g., scaffold-ing). Thus, by incorporating LSA into an ITS, individualized instruction is possible for adjusting both the level of feedback provided and the content presented. The goal of this research is thus to study the acquisition of complex skills through incorporating LSA, a method for representing students' knowledge representations through their essays, into intelligent tutoring systems.Because this research focuses on complex skills from knowledge-rich domains, results from this project extend theories of learning in psychology by providing information about how multiple sources of knowledge are integrated into students' knowledge representations as they are learning . The research also has theoretical implications for educational psychology including the systematic examination of scaffolding for two content areas. In addition, because LSA is an automatic method for deriving knowledge representations, this research has broad implications for developing systems for training in any area of content knowledge.
该项目结合了心理学、教育学、人工智能和计算语言学在学习和知识表示方面的相关最新研究成果,并将它们应用于智能教学系统(ITSS)的开发。学习理论可以通过研究不同类型的知识表征和程序表征的演变来扩展。因此,这项研究将考察学习,即学生知识表征的变化,因为他们整合了多个信息源。尽管ITSS被开发用于检查需要有限可能回答集的明确定义的问题的学习,但ITSS在评估要求学生提供自然语言回答的开放式问题时遇到了问题。然而,要求学生提供作文问题的书面答案可以提供更丰富的学生知识,并提高学生的写作能力。因此,这项研究将证明,ITSS可以扩展到简单的回答之外,并且这些ITSS可以更容易地适应为学生提供个性化的教学。为了开发这些ITSS,本研究使用计算语言学技术潜在语义分析(LSA)从辅导系统中以作文为基础的答案中模拟学生的知识表征。随着学生的知识表征的变化,他们的作文反应也应该改变,包括更多的知识和质量的提高。因此,这样的ITS可以为学生(在领域知识和写作技能方面)的提高提供必要的反馈。此外,智能交通系统可以初步评估学生的能力,并为学生提供额外的帮助,随着学生获得更多的知识(如支架式),帮助逐渐消失。因此,通过将LSA纳入ITS,个性化教学可以调整提供的反馈水平和呈现的内容。因此,本研究的目的是通过将LSA(一种通过作文表征学生知识的方法)整合到智能教学系统中来研究复杂技能的习得。由于本研究关注的是来自知识丰富领域的复杂技能,因此本项目的结果扩展了心理学中的学习理论,提供了关于学生在学习过程中如何将多种知识来源整合到知识表征中的信息。这项研究对教育心理学也有理论意义,包括对两个内容领域的脚手架进行系统的检查。此外,由于LSA是一种自动派生知识表示的方法,因此本研究对开发任何内容知识领域的培训系统具有广泛的意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrienne Lee其他文献

Fondaparinux cross-reactivity in heparin-induced thrombocytopenia successfully treated with high-dose intravenous immunoglobulin and rivaroxaban
高剂量静脉注射免疫球蛋白和利伐沙班成功治疗肝素诱导的血小板减少症中磺达肝素的交叉反应
  • DOI:
    10.1080/09537104.2019.1652263
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    F. Manji;T. Warkentin;J. Sheppard;Adrienne Lee
  • 通讯作者:
    Adrienne Lee
Activated Platelets Harbour SARS-CoV-2 During Severe COVID-19
严重 COVID-19 期间,活化的血小板含有 SARS-CoV-2
  • DOI:
    10.1055/a-1683-8455
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    E. Agbani;P. Schneider;B. McDonald;L. Skeith;M. Poon;Adrienne Lee
  • 通讯作者:
    Adrienne Lee
Virtual behavioural medicine program: An innovative model of care for neuropsychiatric symptoms in dementia
  • DOI:
    10.1016/j.jns.2023.120924
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Morris Freedman;Malcolm Binns;Fidelma Serediuk;Uri Wolf;Einat Danieli;Bradley Pugh;Deb Galet;Eslam Abdellah;Ericka Teleg;Mindy Halper;Lauren Masci;Adrienne Lee;Anna Kirstein;Jordanne Holland;Jacqueline Houston;Jagger Smith
  • 通讯作者:
    Jagger Smith
The First Registry for Patients with Congenital Dyserythropoietic Anemia in North America: Design and Preliminary Results
北美首个先天性红细胞生成不良性贫血患者登记处:设计和初步结果
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Niss;R. Lorsbach;Georgios E Christakopoulos;Lisa R. Trump;M. Reynolds;Katie M Giger;Clarissa E. Johnson;Ammar Husami;D. Buchbinder;J. Rothman;Gavin Roach;Adrienne Lee;V. Gidvani;M. McLemore;S. Chonat;A. Nelson;J. Ball;B. Aronow;C. Lutzko;Kejian Zhang;T. Kalfa
  • 通讯作者:
    T. Kalfa
Bone health in symptomatic carriers of haemophilia A: a protocol for a multicentre prospective matched-cohort study
有症状的 A 型血友病携带者的骨骼健康:多中心前瞻性配对队列研究方案
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Grace H Tang;Erin Norris;Jessica Petrucci;P. James;Adrienne Lee;M. Poon;G. Floros;L. Boma‐Fischer;J. Teitel;R. Nisenbaum;M. Sholzberg
  • 通讯作者:
    M. Sholzberg

Adrienne Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
  • 批准号:
    24K14913
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building Capacity through Professional Learning Communities to Advance Identity Integration in STEM Pre-Service Teacher Preparation
通过专业学习社区进行能力建设,促进 STEM 职前教师准备中的身份整合
  • 批准号:
    2345042
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了