Applying Learning Theory to Systems Problems
将学习理论应用于系统问题
基本信息
- 批准号:9877080
- 负责人:
- 金额:$ 17.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CCR-9877080Scott This project will focus on applying results developed in learning theory to real-life problems. Such application-based theoretical work is important so that the learning models and problems studied capture as best possible the needs of real-life problems. Working to apply theoretical techniques to real problems creates a better understanding of the real-world problems and thus helps direct future theoretical work, facilitating the transfer of results from theory to practice. Many system control algorithms (e.g. networking protocols) depend heavily on ad hoc methods in their operation, and their performance can be very sensitive to the robustness of these methods. These ad hoc approaches are frequently based on assumptions made about the operating environment, e.g. assuming a particular distribution on the traffic patterns in a communication network without a sound statistical basis. This project will develop a framework based on formal learning methods for assisting in automatic system control. This framework will help to determine if better performance can be obtained by a system control algorithm. One goal of this project is to continue research on dynamically adjusting delays of acknowledgments in the TCP protocol. Delaying acknowledgments has two main advantages. First, it allows a single acknowledgment for more than one packet. Second, if a data packet is being sent in the opposite direction, then one can piggyback the acknowledgment on the outgoing packet. However, there is a tradeoff since delaying the acknowledgment too much can increase the latency. Most TCP implementations, used today employ some sort of acknowledgment delay mechanism. The project applies different learning schemes to predict TCP packet arrivals. The learning schemes include ones based on the Weighted Majority (WM) algorithm, ones based on the Exponentially Weighted Moving Average (EWMA) algorithm, and ones based on distributional assumptions with a sound statistical basis. The new ideas include new loss functions (functions that measure the learners' performance) that are more appropriate for the application. Another application explored in this project is that of branch prediction of general purpose programs. A fast, accurate branch predictor is invaluable to a computer architecture that relies on instruction-level parallelism (ILP) techniques, e.g. pipelined and superscalar architectures. Many commercial architectures employ branch prediction schemes, and it is well known that even a small increase in prediction accuracy can greatly increase the amount of ILP that can be exploited. An interesting facet of the branch prediction problem is that it requires some or all of the algorithms to be implemented in hardware. Thus whatever approaches are adapted eventually lead to algorithms that have fast and compact hardware implementations. The principal investigator's experience in hardware design and in learning theory will help in this regard. Applying learning theory results to these problems and other systems problems will then provide guidance in defining new theoretical learning models that better model real-life scenarios. This project will also carefully develop and study such new learning models.
CCR-9877080Scott这个项目将专注于将学习理论发展的成果应用于现实生活中的问题。这种以应用为基础的理论工作很重要,以便学习模型和所研究的问题尽可能最好地捕捉到现实生活中问题的需求。努力将理论技术应用于实际问题,有助于更好地理解现实世界的问题,从而有助于指导未来的理论工作,促进结果从理论转化为实践。许多系统控制算法(例如网络协议)在它们的操作中严重依赖于自组织方法,并且它们的性能可能对这些方法的健壮性非常敏感。这些自组织方法通常基于对操作环境作出的假设,例如,在没有可靠的统计基础的情况下假设通信网络中的业务模式的特定分布。这个项目将开发一个基于正式学习方法的框架,以帮助自动系统控制。该框架将有助于确定是否可以通过系统控制算法获得更好的性能。本项目的目标之一是继续研究动态调整TCP协议中的确认延迟。延迟确认有两个主要优点。首先,它允许对多个数据包进行一次确认。其次,如果数据分组正以相反的方向发送,则可以在传出的分组上携带确认。但是,由于确认延迟太多可能会增加延迟,因此需要进行权衡。目前使用的大多数TCP实现都采用了某种确认延迟机制。该项目应用不同的学习方案来预测TCP数据包到达。学习方案包括基于加权多数(WM)算法的学习方案,基于指数加权移动平均(EWMA)算法的学习方案,以及基于具有良好统计基础的分布假设的学习方案。新的想法包括更适合应用程序的新损失函数(衡量学习者表现的函数)。这个项目中探索的另一个应用是通用程序的分支预测。对于依赖指令级并行(ILP)技术的计算机体系结构,例如流水线和超标量体系结构,快速、准确的分支预测器是无价的。许多商业架构使用分支预测方案,众所周知,即使是预测精度的微小提高也可以极大地增加可利用的ILP的量。分支预测问题的一个有趣方面是,它需要在硬件中实现一些或所有算法。因此,无论采用哪种方法,最终都会产生具有快速而紧凑的硬件实现的算法。首席研究员在硬件设计和学习理论方面的经验将在这方面提供帮助。将学习理论结果应用于这些问题和其他系统问题,将为定义新的理论学习模型提供指导,这些模型可以更好地模拟现实生活场景。该项目还将认真开发和研究这种新的学习模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Scott其他文献
Predictive value of callous-unemotional traits in a large community sample.
大型社区样本中冷酷无情特征的预测价值。
- DOI:
10.1097/chi.0b013e3181b766ab - 发表时间:
2009 - 期刊:
- 影响因子:13.3
- 作者:
P. Moran;R. Rowe;C. Flach;J. Briskman;T. Ford;B. Maughan;Stephen Scott;R. Goodman - 通讯作者:
R. Goodman
Multi-dimensional Treatment Foster Care in England: differential effects by level of initial antisocial behaviour
英国的多维治疗寄养:初始反社会行为水平的不同影响
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:6.4
- 作者:
I. Sinclair;E. Parry;N. Biehal;J. Fresen;C. Kay;Stephen Scott;Jonathan Green - 通讯作者:
Jonathan Green
Multidimensional Treatment Foster Care for Adolescents in English care: randomised trial and observational cohort evaluation
英国护理中青少年的多维治疗寄养:随机试验和观察队列评估
- DOI:
10.1192/bjp.bp.113.131466 - 发表时间:
2014 - 期刊:
- 影响因子:10.5
- 作者:
Jonathan Green;N. Biehal;Chris Roberts;Jo Dixon;C. Kay;Elizabeth Parry;J. Rothwell;A. Roby;D. Kapadia;Stephen Scott;Ian Sinclair - 通讯作者:
Ian Sinclair
School and Peer Factors
学校和同伴因素
- DOI:
10.1002/9781118340899.ch35 - 发表时间:
2012 - 期刊:
- 影响因子:3.1
- 作者:
R. Goodman;Stephen Scott - 通讯作者:
Stephen Scott
Farm-Related Injuries Among Old Order Anabaptist Children: Developing a Baseline from Which to Formulate and Assess Future Prevention Strategies
旧秩序重洗派儿童中与农场有关的伤害:制定制定和评估未来预防策略的基线
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:2.4
- 作者:
Jerene M Gilliam;Paul J. Jones;W. Field;Donald B. Kraybill;Stephen Scott - 通讯作者:
Stephen Scott
Stephen Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Scott', 18)}}的其他基金
Student/Postdoc Poster Program and Travel Scholarships: The 6th Annual Biotechnology and Bioinformatics Symposium at Lincoln, Nebraska; October 9-10, 2009
学生/博士后海报计划和旅行奖学金:在内布拉斯加州林肯举行的第六届年度生物技术和生物信息学研讨会;
- 批准号:
0938224 - 财政年份:2009
- 资助金额:
$ 17.02万 - 项目类别:
Standard Grant
An Extensible Semantic Bridge between Biodiversity and Genomics
生物多样性和基因组学之间的可扩展语义桥梁
- 批准号:
0743783 - 财政年份:2008
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
CAREER: Making Exponential-Time Learning Algorithms Efficient
职业:使指数时间学习算法变得高效
- 批准号:
0092761 - 财政年份:2001
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Fellowship
Optimisation for Game Theory and Machine Learning
博弈论和机器学习的优化
- 批准号:
EP/X040461/1 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Research Grant
CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
- 批准号:
2339978 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Standard Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
- 批准号:
2338506 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
- 批准号:
24K20849 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Standard Grant














{{item.name}}会员




