Vertex Algebras, S-duality Conjecture, and Counting Plane Curves
顶点代数、S-对偶猜想和计算平面曲线
基本信息
- 批准号:9877103
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 1999-07-26
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractZhenbo QinDMS-98 77103Professor Qin will work in the general area of algebraic geometry, vertex algebra, Gromov-Witten invariants, and their interplay with physics. The main tools to be employed are the moduli space of Gieseker semistable bundles on algebraic surfaces; the modular invariance of the characters of vertex operator algebras, and the localization formula from intersection theory. The investigation should shed light on the relations between stable bundles, vertex algebras, and the S-duality conjecture from physics. Professor Qin also expects to learn more about the relation between certain enumerative invariants and Gromov-Witten invariants of the complex projective plane.Algebraic geometry is one of the great advances in mathematics of the 20-th century. In the last twenty years all areas of mathematics and some branches of physics have benefited from our increased application of the abstract but powerful ideas of this subject. In algebraic geometry, geometric objects are replaced by algebraic objects which retain the basic properties of the geometry. This opens the study to the abstract methods of algebra. The result is that complicated geometric connections are easier to study and understand. Professor Qin's research has many of its roots in mathematical physics and should help us understand some of the basic building blocks of our world.
秦振波教授将从事代数几何、顶点代数、Gromov-Witten不变量及其与物理的相互作用等方面的研究。 主要的工具是代数曲面上Gieseker半稳定丛的模空间;顶点算子代数特征的模不变性,以及来自交理论的局部化公式。 这些研究将有助于揭示稳定丛、顶点代数和物理学中的S-对偶猜想之间的关系。 秦教授还希望进一步了解复射影平面上某些枚举不变量与Gromov-Witten不变量之间的关系。代数几何是世纪数学的重大进展之一。在过去的20年里,数学的所有领域和物理学的某些分支都受益于我们对这门学科抽象而有力的思想的日益广泛的应用。在代数几何中,几何对象被代数对象所取代,代数对象保留了几何的基本属性。 这就为代数的抽象方法的研究打开了大门。 其结果是,复杂的几何连接更容易研究和理解。秦教授的研究有许多数学物理的根源,应该有助于我们理解我们世界的一些基本组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenbo Qin其他文献
Vertex operator algebras and the blowup formula for the S-duality conjecture of Vafa and Witten
Vafa和Witten S-对偶猜想的顶点算子代数和爆炸公式
- DOI:
10.4310/mrl.1998.v5.n6.a8 - 发表时间:
1998 - 期刊:
- 影响因子:1
- 作者:
Wei;Zhenbo Qin - 通讯作者:
Zhenbo Qin
On the Euler numbers of certain moduli spaces of curves and points
关于曲线和点的某些模空间的欧拉数
- DOI:
10.4310/cag.2006.v14.n2.a6 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Wei;Zhenbo Qin - 通讯作者:
Zhenbo Qin
Equivalence classes of polarizations and moduli spaces of sheaves
滑轮极化和模空间的等价类
- DOI:
10.4310/jdg/1214453682 - 发表时间:
1993 - 期刊:
- 影响因子:2.5
- 作者:
Zhenbo Qin - 通讯作者:
Zhenbo Qin
Lower-degree Donaldson polynomial invariants of rational surfaces
有理曲面的低次唐纳森多项式不变量
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
W. Li;Zhenbo Qin - 通讯作者:
Zhenbo Qin
On smooth structures of potential surfaces of general type homeomorphic to rational surfaces
- DOI:
10.1007/bf01244306 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Zhenbo Qin - 通讯作者:
Zhenbo Qin
Zhenbo Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenbo Qin', 18)}}的其他基金
Homotopy Theory of Algebras and Its Applications
代数同伦论及其应用
- 批准号:
1801806 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Moduli of vector bundles, Donaldson-Thomas theory and Gromov-Witten theory
矢量丛模、Donaldson-Thomas 理论和 Gromov-Witten 理论
- 批准号:
0755520 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Hilbert Schemes and Moduli of Vector Bundles
向量束的希尔伯特方案和模
- 批准号:
0455304 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Hilbert Schemes, Vector Bundles and their Interplay with Representation Theory
希尔伯特方案、向量束及其与表示论的相互作用会议
- 批准号:
0118343 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Vector Bundles and their Interplay with Representation Theory and String Theory
向量束及其与表示论和弦理论的相互作用
- 批准号:
0138398 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Vertex Algebras, S-duality Conjecture, and Counting Plane Curves
顶点代数、S-对偶猜想和计算平面曲线
- 批准号:
9996346 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Scienaes: Moduli of Stable Bundles, S-Duality Conjecture, and Gromov-Witten Invariants
数学科学:稳定丛模、S-对偶猜想和 Gromov-Witten 不变量
- 批准号:
9622564 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Smooth Structures of Algebraic Surfaces
数学科学:代数曲面的光滑结构
- 批准号:
9400729 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
- 批准号:
EP/W022834/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Schur-Weyl Duality over Frobenius Algebras
Frobenius 代数上的 Schur-Weyl 对偶性
- 批准号:
565565-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Tilting theory of gentle algebras via surface combinatorics
基于表面组合的温和代数倾斜理论
- 批准号:
19K23401 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Gauge theory duality and quiver W-algebras
规范理论对偶性和箭袋 W 代数
- 批准号:
17K18090 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Duality and algebra of loop operators in supersymmetric field theories: integrable systems and cluster algebras
超对称场论中循环算子的对偶性和代数:可积系统和簇代数
- 批准号:
15K17634 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Duality between categories of modules for quantum algebras.
量子代数模块类别之间的对偶性。
- 批准号:
466747-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Quantized Schur algebras, Koszul duality and categorifications
量化 Schur 代数、Koszul 对偶性和分类
- 批准号:
24740011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Unary algebras related to duality theory
与对偶理论相关的一元代数
- 批准号:
170263-2005 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual