Hilbert Schemes and Moduli of Vector Bundles
向量束的希尔伯特方案和模
基本信息
- 批准号:0455304
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of Hilbert schemes and vector bundles is a fundamental problem in algebraic geometry. Their connections with physics and representation theory were pioneered in the work of Atiyah and Penrose. The Hilbert schemes of points on smooth surfaces together with its relation to representation theory of infinite dimensional Lie algebras is a particularly beautiful subject in algebraic geometry, which is related to other areas including Gromov-Witten theory, Donaldson-Thomas theory, the McKay correspondence, the S-duality conjecture, integrable systems, orbifold cohomology, and the n!-conjecture in algebraic combinatorics. In this project, Professor Qin intends to study several problems concerning Hilbert schemes and moduli of vector bundles in the general context of algebraic geometry and its interplay with representation theory and string theory. The main tools are techniques of vertex algebras, quantum cohomology, the virtual localization formula, derived categories of sheaves, and stable bundles on surfaces as well as on Calabi-Yau 3-folds. This project also involves the participation and training of graduate students and postdoctoral associates.Algebraic geometry studies geometric objects described by polynomial equations.It has been at the central stage of recent confluence between mathematics andphysics. Many of these interactions have led to profound improvement in the understanding of both mathematics and physics. Professor Qin's research helps to strength these interactions, and has many of its roots in mathematical physics
Hilbert格式和向量丛的研究是代数几何中的一个基本问题。他们与物理学和表象理论的联系是在阿蒂亚和彭罗斯的工作中开创的。 光滑曲面上点的Hilbert概型及其与无限维李代数表示理论的关系是代数几何中一个特别美丽的主题,它与其他领域有关,包括Gromov-Witten理论,Donaldson-Thomas理论,McKay对应,S-对偶猜想,可积系统,orbifold上同调和n!代数组合学中的猜想。在这个项目中,秦教授打算在代数几何的一般背景下研究关于希尔伯特方案和向量丛模的几个问题,及其与表示论和弦理论的相互作用。主要的工具是顶点代数,量子上同调,虚局部化公式,导出的范畴层,稳定的丛表面以及卡-丘3倍的技术。该项目还包括研究生和博士后的参与和培训.代数几何研究由多项式方程描述的几何对象.它一直处于最近数学和物理学交汇的中心阶段.这些相互作用中的许多都导致了对数学和物理的理解的深刻改善。秦教授的研究有助于加强这些相互作用,并在数学物理中有许多根源
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenbo Qin其他文献
Vertex operator algebras and the blowup formula for the S-duality conjecture of Vafa and Witten
Vafa和Witten S-对偶猜想的顶点算子代数和爆炸公式
- DOI:
10.4310/mrl.1998.v5.n6.a8 - 发表时间:
1998 - 期刊:
- 影响因子:1
- 作者:
Wei;Zhenbo Qin - 通讯作者:
Zhenbo Qin
On the Euler numbers of certain moduli spaces of curves and points
关于曲线和点的某些模空间的欧拉数
- DOI:
10.4310/cag.2006.v14.n2.a6 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Wei;Zhenbo Qin - 通讯作者:
Zhenbo Qin
Equivalence classes of polarizations and moduli spaces of sheaves
滑轮极化和模空间的等价类
- DOI:
10.4310/jdg/1214453682 - 发表时间:
1993 - 期刊:
- 影响因子:2.5
- 作者:
Zhenbo Qin - 通讯作者:
Zhenbo Qin
Lower-degree Donaldson polynomial invariants of rational surfaces
有理曲面的低次唐纳森多项式不变量
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
W. Li;Zhenbo Qin - 通讯作者:
Zhenbo Qin
On smooth structures of potential surfaces of general type homeomorphic to rational surfaces
- DOI:
10.1007/bf01244306 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Zhenbo Qin - 通讯作者:
Zhenbo Qin
Zhenbo Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenbo Qin', 18)}}的其他基金
Homotopy Theory of Algebras and Its Applications
代数同伦论及其应用
- 批准号:
1801806 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Moduli of vector bundles, Donaldson-Thomas theory and Gromov-Witten theory
矢量丛模、Donaldson-Thomas 理论和 Gromov-Witten 理论
- 批准号:
0755520 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Hilbert Schemes, Vector Bundles and their Interplay with Representation Theory
希尔伯特方案、向量束及其与表示论的相互作用会议
- 批准号:
0118343 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Vector Bundles and their Interplay with Representation Theory and String Theory
向量束及其与表示论和弦理论的相互作用
- 批准号:
0138398 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Vertex Algebras, S-duality Conjecture, and Counting Plane Curves
顶点代数、S-对偶猜想和计算平面曲线
- 批准号:
9996346 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Vertex Algebras, S-duality Conjecture, and Counting Plane Curves
顶点代数、S-对偶猜想和计算平面曲线
- 批准号:
9877103 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Scienaes: Moduli of Stable Bundles, S-Duality Conjecture, and Gromov-Witten Invariants
数学科学:稳定丛模、S-对偶猜想和 Gromov-Witten 不变量
- 批准号:
9622564 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Smooth Structures of Algebraic Surfaces
数学科学:代数曲面的光滑结构
- 批准号:
9400729 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
- 批准号:
23K10979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
- 批准号:
23K19952 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
- 批准号:
EP/X036669/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
- 批准号:
2898803 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Fundamentals and applications of tropical schemes
热带计划的基础和应用
- 批准号:
EP/X02752X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
- 批准号:
2887053 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant