High-Speed, High-Resolution 3-D Machine Vision for Automated Inspection of Highway Pavement Surfaces
用于自动检测公路路面的高速、高分辨率 3D 机器视觉
基本信息
- 批准号:9900337
- 负责人:
- 金额:$ 23.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The highway system is vital to the economy of the United States. According to the survey conducted by the Federal Highway Administration, 90 percent of personal travel and 25 percent of freight movement is served by highways. In 1998, federal, state, and local governments are expected to spend a combined sum of over $106 billion on highways. A significant portion of it will be used for system preservation, in particular, pavement 3R (reconstruction, rehabilitation, and resurface). Inspection of pavement surface conditions plays a pivotal role in pavement 3R. Currently, these inspections are dome mostly by manual visual inspection. This is a slow, labor-intensive, tedious, dangerous, expensive, and subjective method. To solve these problems, an automated inspection system needs to be developed. In this research, we propose to develop a novel 3-D machine vision technique for automated inspection of pavement surfaces. This technique is based on a color-encoded fringe projection and phase shifting concept that provides high-speed (limited only by the frame rate of the camera) and high-resolution (limited only by the number of pixels in the camera) 3-D surface contouring capability. Integrated with a specially developed vehicle, the system can provide real-time inspections of pavement surface conditions at normal highway speeds (55 mph). With advanced algorithms developed based on wavelet analysis, automatic detection, identification, and measurment of various types of pavement distresses can be realized. Moreover, if global positioning system (GPS) and a map software are used, it is possible to pinpoint the locations of pavement distresses and if necessary, lead the repair engineerrs of workers to the sites. The objectives of the proposed research are as follows: 1. Develop a novel 3-D machine vision technique based on color-encoded fringe projection and phase shifting for high-speed, high-resolution pavement inspection. 2. Develop a special vehicle that incorporates the 3-D machine vision system and GP5 for automated pavement data collection at highway speeds. 3. Develop algorithms for sutomatic detection and quantitative evalutation of pavement surface distresses based on wavelet analysis techniques.
高速公路系统对美国经济至关重要。 根据联邦公路管理局进行的调查,90%的个人旅行和25%的货物运输是由公路提供服务的。 1998年,预计联邦、州和地方政府在公路上的总支出将超过1060亿美元。 其中很大一部分将用于系统保护,特别是路面3R(重建、修复和重铺)。 路面状况的检测在路面3R中起着至关重要的作用。 目前,这些检查大多是通过人工目视检查。 这是一种缓慢、劳动密集、乏味、危险、昂贵且主观的方法。 为了解决这些问题,需要开发自动化检测系统。 在这项研究中,我们建议开发一种新的3-D机器视觉技术的自动检测路面。 该技术基于彩色编码条纹投影和相移概念,其提供高速(仅受相机的帧速率限制)和高分辨率(仅受相机中的像素数量限制)3D表面轮廓绘制能力。 该系统与专门开发的车辆相结合,可以在正常公路速度(55英里/小时)下提供路面状况的实时检查。 基于小波分析的先进算法,可以实现各种路面病害的自动检测、识别和测量。 此外,如果使用全球定位系统(GPS)和地图软件,则可以精确定位路面损坏的位置,并在必要时将维修工程师或工人带到现场。 本文的研究目标如下:1. 开发一种基于彩色编码条纹投影和相移的新型三维机器视觉技术,用于高速、高分辨率路面检测。 2. 开发一种特殊的车辆,它结合了3-D机器视觉系统和GP 5,用于在高速公路上自动收集路面数据。 3. 提出了基于小波分析技术的路面病害监测与定量评价算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peisen Huang其他文献
Association of long-term SBP with clinical outcomes and quality of life in heart failure with preserved ejection fraction: an analysis of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial
- DOI:
10.1097/HJH.0000000000002807. - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Peisen Huang;Yuan Yu;Fangfei Wei;Wengen Zhu;Ruicong Xue;Yugang Dong;Chen Liu - 通讯作者:
Chen Liu
A portable 3D shape measurement system based on the combined stereovision and phase shifting method
基于组合立体视觉和相移方法的便携式3D形状测量系统
- DOI:
10.1117/12.829284 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Xu Han;Peisen Huang;Zhicheng Deng;Leon Xu - 通讯作者:
Leon Xu
Salt restriction and risk of adverse outcomes in heart failure with preserved ejection fraction
射血分数保留的心力衰竭的盐限制和不良后果的风险
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.7
- 作者:
Jiayong Li;Zhe Zhen;Peisen Huang;Yugang Dong;Chen Liu;Weihao Liang - 通讯作者:
Weihao Liang
ATORVASTATIN IMPROVES THE THERAPEUTIC EFFICACY OF MESENCHYMAL STEM CELLS DERIVED EXOSOMES IN ACUTE MYOCARDIAL INFARCTION BY PROMOTING ENDOTHELIAL CELL FUNCTION
- DOI:
10.1016/s0735-1097(18)30624-7 - 发表时间:
2018-03-10 - 期刊:
- 影响因子:
- 作者:
Peisen Huang;YueJin Yang - 通讯作者:
YueJin Yang
Salt restriction and risk of adverse outcomes in heart failure with preserved ejection fraction
- DOI:
10.1136/heartjnl-2022-321167 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Jiayong Li;Zhe Zhen;Peisen Huang;Yu-Gang Dong;Chen Liu;Weihao Liang - 通讯作者:
Weihao Liang
Peisen Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peisen Huang', 18)}}的其他基金
SGER: High-Resolution 3-D Surface Topography Measurement Using a Scanning Electron Microscope
SGER:使用扫描电子显微镜进行高分辨率 3D 表面形貌测量
- 批准号:
0800212 - 财政年份:2008
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
U.S.-Japan Cooperative Science: Flatness Metrology of Large Wafers with Nanometer Accuracy
美日合作科学:纳米级精度的大晶圆平面度测量
- 批准号:
9910063 - 财政年份:2000
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
Full-Field Three-Dimensional Surface Contouring for Industrial Inspection and Reverse Engineering
用于工业检测和逆向工程的全视野三维表面轮廓
- 批准号:
9713895 - 财政年份:1997
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
相似国自然基金
基于Resolution算法的交互时态逻辑自动验证机
- 批准号:61303018
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Transparency and super-resolution of river interiors using a physics-embedded machine-learning (PINNs)
使用物理嵌入式机器学习 (PINN) 实现河流内部的透明度和超分辨率
- 批准号:
23K17807 - 财政年份:2023
- 资助金额:
$ 23.23万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
- 批准号:
10373650 - 财政年份:2022
- 资助金额:
$ 23.23万 - 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
- 批准号:
10551850 - 财政年份:2022
- 资助金额:
$ 23.23万 - 项目类别:
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
- 批准号:
2136938 - 财政年份:2022
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
- 批准号:
2136940 - 财政年份:2022
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
- 批准号:
2136939 - 财政年份:2022
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
ISS: Understanding the Gravity Effect on Flow Boiling Through High-Resolution Experiments and Machine Learning
ISS:通过高分辨率实验和机器学习了解重力对流动沸腾的影响
- 批准号:
2126437 - 财政年份:2021
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant
Challenge to species identification with high-resolution echosounders -analysis of fish-school echoes with machine learning-
高分辨率回声测深仪对物种识别的挑战 - 通过机器学习分析鱼群回声 -
- 批准号:
20K21329 - 财政年份:2020
- 资助金额:
$ 23.23万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Probabilistic machine learning models for resolution enhancement of diffusion magnetic resonance imaging.
用于扩散磁共振成像分辨率增强的概率机器学习模型。
- 批准号:
2496521 - 财政年份:2020
- 资助金额:
$ 23.23万 - 项目类别:
Studentship
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
合作研究:框架:利用高分辨率观测和机器学习提高对大气重力波的理解和表示
- 批准号:
2004512 - 财政年份:2020
- 资助金额:
$ 23.23万 - 项目类别:
Standard Grant