SGER: Stochastic and Convex Finite Element Methods Asociated with Micromechanics
SGER:与微观力学相关的随机和凸有限元方法
基本信息
- 批准号:9910195
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9910195Novel finite element method is developed for stochastic structures, i.e. those involving random elastic and/or geometric properties and subjected to random or unknown-but-bounded loads. The method is based on micromechanics. Existing literature covers well the cases when the coefficient of variation of involved random parameters, functions of fields are small, as well when the stochastic fields are defined phenomenologically. The experimental evidence necessitates for generalization of existing techniques for the case of moderate or large coefficients of variation. The only procedure existing today to tackle these problems is the Monte Carlo Method. Here, some effective numerical methods will be developed that do not necessitate the use of the Monte Carlo Method. Novel variational principles are established to deal with shear beams, bending of beams and plates, deformation of shells. The developed techniques constitute useful and efficient numerical techniques for both small, moderate or large variation of stochastic parameters, in conjunction with them being based on micro-mechanics. In addition, for the first time, the convex finite elements will be developed for problems where probabilistic information is unavailable.
9910195提出了一种用于随机结构的新的有限元方法,即涉及随机弹性和/或几何特性并承受随机或未知但有界载荷的结构。该方法是基于微观力学。现有的文献很好地涵盖了所涉及的随机参数,场函数的变异系数小的情况下,以及当随机场的定义是唯象的。实验证据需要推广现有的技术的情况下,中等或大的变异系数。目前解决这些问题的唯一方法是蒙特卡罗方法。在这里,将开发一些有效的数值方法,这些方法不需要使用蒙特卡罗方法。建立了新的变分原理来处理剪切梁、梁和板的弯曲、壳的变形。所开发的技术构成有用的和有效的数值技术的随机参数的小,中或大的变化,结合他们是基于微观力学。此外,第一次,凸有限元将开发的概率信息是不可用的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Elishakoff其他文献
Distilling slow process probability density from fast random data
从快速随机数据中提取慢速过程概率密度
- DOI:
10.1016/j.ymssp.2022.109156 - 发表时间:
2022 - 期刊:
- 影响因子:8.4
- 作者:
Yanping Tian;Yong Wang;Xiaoling Jin;Zhilong Huang;Isaac Elishakoff - 通讯作者:
Isaac Elishakoff
Minimization of the least favorable static response of a two-span beam subjected to uncertain loading
承受不确定载荷的两跨梁的最不利静态响应的最小化
- DOI:
10.1016/j.tws.2013.04.004 - 发表时间:
2013-09 - 期刊:
- 影响因子:6.4
- 作者:
Isaac Elishakoff;*Wang Xiaojun;Hu Juxi;Qiu Zhiping - 通讯作者:
Qiu Zhiping
Vibration tailoring of inhomogeneous rod that possesses a trigonometric fundamental mode shape
- DOI:
10.1016/j.jsv.2007.06.079 - 发表时间:
2008-01-22 - 期刊:
- 影响因子:
- 作者:
Ivo Caliò;Isaac Elishakoff - 通讯作者:
Isaac Elishakoff
Essay on the Contributors to the Elastic Stability Theory
- DOI:
10.1007/s11012-004-2199-y - 发表时间:
2005-02-01 - 期刊:
- 影响因子:2.100
- 作者:
Isaac Elishakoff - 通讯作者:
Isaac Elishakoff
Novel Modification to the Timoshenko–Ehrenfest Theory for Inhomogeneous and Nonuniform Beams
对非均匀和非均匀梁 Timoshenko-Ehrenfest 理论的新颖修改
- DOI:
10.2514/1.j056885 - 发表时间:
2020-02 - 期刊:
- 影响因子:2.5
- 作者:
Jianghong Yuan;Zhuangzhuang Mu;Isaac Elishakoff - 通讯作者:
Isaac Elishakoff
Isaac Elishakoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Elishakoff', 18)}}的其他基金
Vibration and Buckling of Viscoelastic Structures with Geometric and Material Uncertainties - Conves Modelling
具有几何和材料不确定性的粘弹性结构的振动和屈曲 - Conves 建模
- 批准号:
9215698 - 财政年份:1993
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
A New Approach - Convexity Modelling - to an Old Research Topic Buckling of Viscoelastic and Nonlinear Elastic Structures with Uncertain Imperfections
一种新方法——凸建模——解决具有不确定缺陷的粘弹性和非线性弹性结构的屈曲这个老研究课题
- 批准号:
9015371 - 财政年份:1990
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Studies of Learning with Stochastic Convex Optimization
随机凸优化学习的新研究
- 批准号:
2110836 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
A Non-Asymptotic Analysis of Stochastic Mirror Descent for Non-Convex Learning
非凸学习的随机镜像下降的非渐近分析
- 批准号:
2444063 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Studentship
The Birkhoff Conjecture, Spectral Rigidity for Convex Reflecting Particle Systems, and Stochastic Arnold Diffusion
伯克霍夫猜想、凸反射粒子系统的光谱刚性和随机阿诺德扩散
- 批准号:
1702278 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
A study of stochastic hierarchical convex optimization algorithms and their applications to signal recovery
随机分层凸优化算法及其在信号恢复中的应用研究
- 批准号:
15H06197 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Stochastic Convex Optimization Algorithm for Image Processing and Transfer
用于图像处理和传输的随机凸优化算法
- 批准号:
15K06078 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solving optimal stopping problems and reflected backward stochastic differential equations by convex optimization and penalization
通过凸优化和惩罚求解最优停止问题和反映后向随机微分方程
- 批准号:
202743894 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Priority Programmes
Theory and Applications of Stochastic First-order Methods for Large-scale Stochastic Convex Optimization
大规模随机凸优化的随机一阶方法的理论与应用
- 批准号:
1000347 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Research on pricing theory by convex risk measures taking account of hedging, and its related stochastic analysis
考虑套期保值的凸风险测度定价理论及其相关随机分析
- 批准号:
22540149 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient Stochastic Oracle Based Algorithms for Stochastic Programming and Large Scale Convex Optimization
基于随机规划和大规模凸优化的高效随机 Oracle 算法
- 批准号:
0914785 - 财政年份:2009
- 资助金额:
$ 4万 - 项目类别:
Standard Grant