A Non-Asymptotic Analysis of Stochastic Mirror Descent for Non-Convex Learning

非凸学习的随机镜像下降的非渐近分析

基本信息

  • 批准号:
    2444063
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Many state of the art machine learning techniques depend heavily on the optimisation of some non-convex objective. Often, this procedure is computationally expensive and requires techniques that employ stochastic approximations or regularisation using artificial noise. For instance, there are a variety of techniques in deep learning that use artificial noise applied to the data, parameters or update direction, all of which have been shown to encourage faster convergence and improved generalisation. Though many of these techniques have demonstrated their validity through repeated experimentation and testing, the theoretical framework to validate and understand them is still in its infancy.Another technique which is used to overcome the aforementioned computational difficulties is the mirror descent framework, which does so by taking advantage of the known geometric properties specific to the problem in consideration. It is highly popular in convex optimisation as in this setting there are many provable advantages to this algorithm. Its stochastic counterpart, stochastic mirror descent, is rapidly gaining popularity in non-convex learning. But again, the theoretical framework in this setting is under-developed.Through our project, we seek to develop a better understanding of the statistical and computational properties of these techniques in the large-scale learning setting. Specifically, we are interested in quantitively comparing the consistency and generalisation performance of these techniques and seeing how they change as the problem grows more challenging.Guiding much of our methodology will be the focus on non-asymptotic analysis, that is compared to analyses in which quantities are taken to their infinite limits. We believe this is essential for applications in large-scale learning where only a limited number of iterations can take place and the effect of the number of parameters on performance is of key interest.Fundamentally, our approach will be based on approximating the iterative optimisation procedure with stochastic processes that evolve continuously in time, specifically diffusion processes. With this, we gain access to the broad suite of powerful techniques for analysing diffusions. This approach has seen a growing popularity in recent years and has already yielded interesting results in the learning setting. The project will also draw heavily from the study of stochastic differential equations as well as high dimensional statistics.This project falls within the EPSRC Statistics and Applied probability area.
许多最先进的机器学习技术在很大程度上依赖于一些非凸目标的优化。通常,该过程在计算上是昂贵的,并且需要采用随机近似或使用人工噪声的正则化的技术。例如,在深度学习中有各种技术使用应用于数据、参数或更新方向的人工噪声,所有这些技术都被证明可以促进更快的收敛和改进的泛化。虽然这些技术中的许多已经通过反复的实验和测试证明了它们的有效性,但是验证和理解它们的理论框架仍然处于起步阶段。另一种用于克服上述计算困难的技术是镜像下降框架,该框架通过利用特定于所考虑问题的已知几何特性来实现。它在凸优化中非常流行,因为在这种情况下,该算法有许多可证明的优点。它的随机对应物,随机镜像下降,在非凸学习中迅速流行。但同样,在这种情况下的理论框架是欠发达的。通过我们的项目,我们试图在大规模的学习环境中发展这些技术的统计和计算特性的更好的理解。具体来说,我们感兴趣的是定量比较这些技术的一致性和泛化性能,并看到它们如何随着问题变得更具挑战性而变化。指导我们的大部分方法将集中在非渐近分析上,即与数量被带到无限极限的分析进行比较。我们相信这是必不可少的应用程序在大规模的学习,只有有限数量的迭代可以发生和性能上的参数的数量的影响是关键interests.Fundamentally,我们的方法将是基于近似的迭代优化过程与随机过程,不断演变的时间,特别是扩散过程。有了这个,我们可以使用一系列强大的技术来分析扩散。近年来,这种方法越来越受欢迎,并且已经在学习环境中产生了有趣的结果。该项目还将大量借鉴随机微分方程以及高维统计的研究。该项目属于EPSRC统计和应用概率领域的福尔斯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
  • 批准号:
    2879209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
  • 批准号:
    2306327
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Midwestern Workshop on Asymptotic Analysis 2023
会议:2023 年中西部渐近分析研讨会
  • 批准号:
    2331073
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
  • 批准号:
    2305038
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
  • 批准号:
    22KJ1072
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Asymptotic analysis and its application to fluorescence diffuse optical tomography
渐近分析及其在荧光漫射光学层析成像中的应用
  • 批准号:
    23K19002
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2022-03483
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了