Topics in Dilation Theory

膨胀理论专题

基本信息

  • 批准号:
    9970347
  • 负责人:
  • 金额:
    $ 5.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-05-15 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9970347Principal Investigator: Scott A. McCulloughAbstract: McCullough plans to investigate several related problems in functional analysis and operator theory. A common theme is the dilation of operators and the concomitant lifting of intertwining maps -- commutant lifting, as it is called -- and the special cases of interpolation of Nevanlinna-Pick and Caratheodory type. Nevanlinna-Pick kernels, also known as NP kernels, were introduced by Agler as a natural generalization of the Szego kernel. Examples include the Dirichlet kernel, kernels nearly equal the Szego kernel on a multiply connected domain, and the kernels over the ball for Fock space. Dilation and commutant lifting results that parallel classical results hold for these kernels, including commutant lifting for bundle shifts over a two-holed domain. A number of issues for NP kernels and multiply connected domains remain unresolved. All function theoretic objects over a multiply connected domain can be described in terms of theta functions. From the trisecant identity, in combination with with knowledge of the zeros of theta functions, it follows that for any given scalar valued Nevanlinna-Pick problem over an annulus it suffices to consider just two kernels, which are explicitly determined from the data. Theta functions will be used to investigate additional problems over the annulus and more general multiply connected domains. The extremal elements (roughly what an algebraist would term projective elements) of an Agler family of operators are the natural objects to which to lift or dilate generic members of the family. Families for which the extremals are C*-closed, such as the families of contractions, isometries, and subnormal contractions, are particularly nice from a model theoretic viewpoint. This is not the case for the hyponormal contractions nor for the numerical radius contractions, where the extremals are a proper subset of the family but the C*-closure of the extremals is the entire family. A good measure of the divergence of the extremals from their C*-closure does not yet exist.A common mathematical problem that arises in physics and engineering is to determine whether certain partial information is consistent with a favorable whole. For instance, certain seismographic information indicates the presence of oil reserves, while other seismic data are not pertinent to the question. Similarly, in the design of an electrical circuit there are often several competing design criteria from which one must select the relevant ones. These problems can also be viewed as representing given information in a nice way as a part of a larger, more coherent whole. McCullough will investigate new stategies for imbedding the "partial" into the "whole," and conduct a search for a cohesive theory unifying many different applications. This will be done in the framework of the mathematical field known as operator theory. The underlying mathematics is quite similar to that used in digital technology and automatic controlers such as autopilots.
提案:DMS-9970347主要研究者:Scott A. McCullough摘要:McCullough计划研究泛函分析和算子理论中的几个相关问题。一个共同的主题是膨胀的运营商和随之而来的提升交织地图-交换提升,因为它是所谓的-和特殊情况下插值的Nevanlinna-Pick和Caratheodory类型。Nevanlinna-Pick核,也称为NP核,是由Agler引入的Szego核的自然推广。例子包括狄利克雷核,多连通域上近似等于Szego核的核,以及Fock空间球上的核。膨胀和交换提升的结果,平行的经典结果,这些内核,包括交换提升束移位超过一个两孔域。NP核和多连通域的一些问题仍然没有得到解决。多连通域上的所有函数论对象都可以用θ函数来描述。从三割线恒等式,结合theta函数零点的知识,可以得出,对于任何给定的环形上的标量值Nevanlinna-Pick问题,只考虑两个核就足够了,这是从数据中明确确定的。Theta函数将被用来调查额外的问题,在环和更一般的多连通域。阿格勒算子族的极值元素(大致是代数学家所称的投射元素)是提升或扩张该算子族的一般成员的自然对象。极值是C *-闭的族,例如收缩族、等距族和次正规收缩族,从模型论的观点来看是特别好的。这不是亚正规压缩和数值半径压缩的情况,其中极值是族的真子集,但极值的C *-闭包是整个族。目前还没有一个很好的度量极值与其C *-闭包的发散性的方法。在物理和工程中出现的一个常见的数学问题是确定某些部分信息是否与一个有利的整体一致。例如,某些地震资料表明存在石油储量,而其他地震数据则与问题无关。类似地,在电路设计中,通常有几个相互竞争的设计标准,必须从中选择相关的标准。这些问题也可以被看作是以一种很好的方式将给定的信息表示为一个更大、更连贯的整体的一部分。McCullough将研究将“局部”嵌入“整体”的新策略,并寻求统一许多不同应用的内聚理论。这将在被称为算子理论的数学领域的框架内完成。其基础数学与数字技术和自动驾驶仪等自动控制器中使用的数学非常相似。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott McCullough其他文献

The 3-Isometric Lifting Theorem
  • DOI:
    10.1007/s00020-015-2240-7
  • 发表时间:
    2015-05-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Scott McCullough;Benjamin Russo
  • 通讯作者:
    Benjamin Russo
Isometric representations of some quotients ofH ∞ of an annulus
The trisecant identity and operator theory
Ersatz Commutant Lifting with Test Functions
  • DOI:
    10.1007/s11785-007-0022-1
  • 发表时间:
    2007-06-25
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scott McCullough;Saida Sultanic
  • 通讯作者:
    Saida Sultanic
Matrix Representations for Positive Noncommutative Polynomials
  • DOI:
    10.1007/s11117-005-0013-2
  • 发表时间:
    2006-03-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    J. William Helton;Scott McCullough;Mihai Putinar
  • 通讯作者:
    Mihai Putinar

Scott McCullough的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott McCullough', 18)}}的其他基金

Operator Theory and Matrix Inequalities
算子理论和矩阵不等式
  • 批准号:
    1764231
  • 财政年份:
    2018
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Dilation theory, free semialgebraic geometry and matrix convex sets
膨胀理论、自由半代数几何和矩阵凸集
  • 批准号:
    1361501
  • 财政年份:
    2014
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Dilation theory and convexity in free semi-algebraic geometry
自由半代数几何中的膨胀理论和凸性
  • 批准号:
    1101137
  • 财政年份:
    2011
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
South Eastern Analysis Meeting, SEAM 27
东南分析会议,SEAM 27
  • 批准号:
    1101134
  • 财政年份:
    2010
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Dilation Theory, Non-commutative Convexity and Systems
膨胀理论、非交换凸性和系统
  • 批准号:
    0758306
  • 财政年份:
    2008
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
SouthEastern Analysis Meeting
东南分析会议
  • 批准号:
    0535045
  • 财政年份:
    2006
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Topics in Dilation Theory
膨胀理论专题
  • 批准号:
    0457504
  • 财政年份:
    2005
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Topics in Dilation Theory
膨胀理论专题
  • 批准号:
    0140112
  • 财政年份:
    2002
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in Dilation Theory
数学科学:膨胀理论主题
  • 批准号:
    9307966
  • 财政年份:
    1993
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant

相似海外基金

Characterizations, automorphisms and dilation theory of operator algebras
算子代数的表征、自同构和膨胀理论
  • 批准号:
    437943-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Postdoctoral Fellowships
Dilation theory, free semialgebraic geometry and matrix convex sets
膨胀理论、自由半代数几何和矩阵凸集
  • 批准号:
    1361501
  • 财政年份:
    2014
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Characterizations, automorphisms and dilation theory of operator algebras
算子代数的表征、自同构和膨胀理论
  • 批准号:
    437943-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Postdoctoral Fellowships
Dilation theory and convexity in free semi-algebraic geometry
自由半代数几何中的膨胀理论和凸性
  • 批准号:
    1101137
  • 财政年份:
    2011
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Dilation Theory, Non-commutative Convexity and Systems
膨胀理论、非交换凸性和系统
  • 批准号:
    0758306
  • 财政年份:
    2008
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Topics in Dilation Theory
膨胀理论专题
  • 批准号:
    0457504
  • 财政年份:
    2005
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Topics in Dilation Theory
膨胀理论专题
  • 批准号:
    0140112
  • 财政年份:
    2002
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Non-commutative n-tuples of operators and dilation theory
算子的非交换n元组和膨胀理论
  • 批准号:
    230874-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Postdoctoral Fellowships
Non-commutative n-tuples of operators and dilation theory
算子的非交换n元组和膨胀理论
  • 批准号:
    230874-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Postdoctoral Fellowships
Mathematical Sciences: Topics in Dilation Theory
数学科学:膨胀理论主题
  • 批准号:
    9307966
  • 财政年份:
    1993
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了