Dilation Theory, Non-commutative Convexity and Systems
膨胀理论、非交换凸性和系统
基本信息
- 批准号:0758306
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-15 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research of this proposal is in functional analysis and operator theory related to engineering system theory and to several variables and mutliply connected domains in the complex plane. Many problems in linear control theory can be formulated in terms of polynomials in several non-commuting variables. In applications, convexity of the polynomial is either known or desired. A sample result of Helton and the PI is that a convex polynomial in non-commuting variables has degree at most two and can be written as a linear term plus a sumof squares of linear terms. McCullough will continue extending the theory of non-commutative polynomials and rational functions with an eye toward convexity. He will also continue to investigate non-self-adjoint operator algebras of functions, particularly those associated to multiply connected domains and to several commuting variables whose unit balls are specified by a given collection of functions. Ideas and techniques from functional analysis and operator theory are powerfultools in the study of matrix inequalities which take the form of a polynomial or rational function of matrices (as the variables) being positive semi-definite. Such matrix inequalities model a large class of engineering linear systems problems, like those arising in the design and control of automatic controllers. Convex matrix inequalities are important for design and numerical implementation. A goal of this proposal is to further understand convex matrix inequalities and when and how it is possible to convert a non-convex inequality into a convex inequality.
这个建议的研究是在功能分析和运营商理论有关的工程系统理论和多变量和多连通域在复平面。 线性控制理论中的许多问题可以用多个非交换变量的多项式来表示。 在应用中,多项式的凸性是已知的或期望的。Helton和PI的一个示例结果是,非交换变量的凸多项式的次数至多为2,并且可以写成线性项加上线性项的平方和。麦卡洛将继续扩展非交换多项式和有理函数的理论,并着眼于凸性。 他还将继续调查非自伴算子代数的功能,特别是那些相关的多连接域和几个交换变量的单位球指定由一个给定的收集功能。泛函分析和算子理论的思想和技巧是研究矩阵不等式的有力工具,这些矩阵不等式的形式为多项式或有理函数的矩阵(作为变量)是半正定的。这样的矩阵不等式模型的一大类工程线性系统的问题,如自动控制器的设计和控制中出现的问题。 凸矩阵不等式在设计和数值实现中具有重要意义。 这个提议的一个目标是进一步理解凸矩阵不等式,以及何时以及如何将非凸不等式转换为凸不等式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott McCullough其他文献
The 3-Isometric Lifting Theorem
- DOI:
10.1007/s00020-015-2240-7 - 发表时间:
2015-05-19 - 期刊:
- 影响因子:0.900
- 作者:
Scott McCullough;Benjamin Russo - 通讯作者:
Benjamin Russo
Isometric representations of some quotients ofH ∞ of an annulus
- DOI:
10.1007/bf01332661 - 发表时间:
2001-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Scott McCullough - 通讯作者:
Scott McCullough
The trisecant identity and operator theory
- DOI:
10.1007/bf01192045 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Scott McCullough - 通讯作者:
Scott McCullough
Ersatz Commutant Lifting with Test Functions
- DOI:
10.1007/s11785-007-0022-1 - 发表时间:
2007-06-25 - 期刊:
- 影响因子:0.800
- 作者:
Scott McCullough;Saida Sultanic - 通讯作者:
Saida Sultanic
Commutant lifting on a two holed domain
- DOI:
10.1007/bf01225528 - 发表时间:
1999-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Scott McCullough - 通讯作者:
Scott McCullough
Scott McCullough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott McCullough', 18)}}的其他基金
Operator Theory and Matrix Inequalities
算子理论和矩阵不等式
- 批准号:
1764231 - 财政年份:2018
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Dilation theory, free semialgebraic geometry and matrix convex sets
膨胀理论、自由半代数几何和矩阵凸集
- 批准号:
1361501 - 财政年份:2014
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Dilation theory and convexity in free semi-algebraic geometry
自由半代数几何中的膨胀理论和凸性
- 批准号:
1101137 - 财政年份:2011
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
South Eastern Analysis Meeting, SEAM 27
东南分析会议,SEAM 27
- 批准号:
1101134 - 财政年份:2010
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Dilation Theory
数学科学:膨胀理论主题
- 批准号:
9307966 - 财政年份:1993
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
2415034 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
- 批准号:
2401383 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
- 批准号:
MR/Y003926/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Fellowship
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




