Arithmetic of Elliptic Curves
椭圆曲线的算术
基本信息
- 批准号:9970382
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970382Dr. Silverman will conduct research on the arithmetic of elliptic curves. He will do a theoretical analysis of a new algorithm for solving the discrete logarithm problem on elliptic curves and give optimizations for the various parameters required by the algorithm. He will study lower bounds for the canonical height on elliptic curves and prove a Lehmer-type bound for non-reciprocal points. He will investigate the relationship between the Frobenius trace values of an elliptic curve and the rank of the curve so as the study the variation of the rank in families of curves and give a probabilistic quantitative justification for Mestre's method of producing elliptic curves of high rank. All of these projects will significantly advance our knowledge of the arithmetic theory of elliptic curves, an area of mathematics which is of widespread interest in its own right and because of its applicability to number theory and other areas of mathematics.The proposed research project fits into the general framework of understanding the number theoretic properties of elliptic curves. This theory has been extensively studied for a long time, both for its intrinsic beauty and its applicability to other areas of number theory and mathematics. In recent years, the full power of modern arithmetic and algebraic geometry have been brought into play, with excellent results. All three main projects will answer important theoretical and practical questions concerning the arithmetic of elliptic curves and will spur further research in this field.
9970382博士西尔弗曼将研究椭圆曲线的算法。他将做一个新的算法,解决椭圆曲线上的离散对数问题的理论分析,并给出优化算法所需的各种参数。 他将研究下限的典型高度椭圆曲线和证明一个莱默型界的非互易点。 他将调查之间的关系Frobenius迹值的椭圆曲线和排名的曲线,以便研究的变化排名家庭的曲线,并给予概率定量理由梅斯特的方法生产椭圆曲线的高排名。 所有这些项目将大大推进我们的知识的算术理论的椭圆曲线,一个领域的数学,这是广泛的兴趣,在其本身的权利,因为其适用于数论和其他领域的mathematics.The拟议的研究项目符合一般框架的理解数论性质的椭圆曲线。 这个理论已经被广泛研究了很长一段时间,既因为它的内在美,也因为它对数论和数学其他领域的适用性。近年来,充分发挥了现代算术和代数几何的威力,取得了很好的效果。 这三个主要项目将回答有关椭圆曲线算法的重要理论和实践问题,并将推动这一领域的进一步研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Silverman其他文献
Joseph Silverman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Silverman', 18)}}的其他基金
FRG: Collaborative Research: Algebraic Dynamics
FRG:合作研究:代数动力学
- 批准号:
0854755 - 财政年份:2009
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Investigations in Arithmetic Geometry and Arithmetic Dynamics
算术几何和算术动力学研究
- 批准号:
0650017 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
VIGRE: Integration of Research and Education in Mathematics and Applied Mathematics
VIGRE:数学和应用数学研究与教育的整合
- 批准号:
9977372 - 财政年份:2000
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Number Theory
数学科学:数论研究
- 批准号:
9424642 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations in the Arithmetic of Curves and Surfaces
数学科学:曲线和曲面的算术研究
- 批准号:
9121727 - 财政年份:1992
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Computation in Analysis and Number Theory
分析与数论中的数学计算
- 批准号:
9105220 - 财政年份:1991
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Height Functions and Arithmetic Geometry
数学科学:高度函数和算术几何
- 批准号:
8913113 - 财政年份:1989
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Integral Points on Curves and Surfaces
数学科学:曲线和曲面上的积分点
- 批准号:
8842154 - 财政年份:1988
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8311670 - 财政年份:1983
- 资助金额:
$ 9万 - 项目类别:
Fellowship Award
Engineering Methods in Plasma Science
等离子体科学的工程方法
- 批准号:
7907781 - 财政年份:1979
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似海外基金
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
New methods in multiplicative number theory applied to number fields, elliptic curves, modular forms, and other arithmetic data
乘法数论的新方法应用于数域、椭圆曲线、模形式和其他算术数据
- 批准号:
502433-2017 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Postdoctoral Fellowships
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
New methods in multiplicative number theory applied to number fields, elliptic curves, modular forms, and other arithmetic data
乘法数论的新方法应用于数域、椭圆曲线、模形式和其他算术数据
- 批准号:
502433-2017 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Postdoctoral Fellowships
Applications of the Arithmetic of Elliptic Curves
椭圆曲线算法的应用
- 批准号:
498662-2016 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic 2015: Elliptic Curves, Diophantine Geometry, and Dynamics
算术 2015:椭圆曲线、丢番图几何和动力学
- 批准号:
1517886 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Workshop Proposal: The Arithmetic of Elliptic Curves and Special Values of L-Functions, May 2-4, 2014
研讨会提案:椭圆曲线的算术和 L 函数的特殊值,2014 年 5 月 2-4 日
- 批准号:
1416887 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Standard Grant