Statistical Mechanics of Semiflexible Polymers
半柔性聚合物的统计力学
基本信息
- 批准号:9970589
- 负责人:
- 金额:$ 20.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-05-01 至 2003-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970589WangThis grant supports theoretical research on the statistical mechanics of polymers. The use of flexible chain models for polymers, e.g., the freely-jointed chain model, the bead-string or its continuous version of the gaussian model, have contributed considerably to our current understanding of the dynamic and thermodynamic properties of polymers. Many polymer systems, especially biopolymers such as DNA and actin filaments, and main-chain liquid-crystalline polymers, require that the stiffness of the polymer chain be taken into account explicitly. A number of fundamental issues will be addressed in the static and dynamic properties of semiflexible polymers. These include: (1) understanding the single chain dynamics of a semiflexible polymer; (2) understanding the conformation and dynamics of a semiflexible chain in a nematic field, with a focus on multiple hairpins; and, (3) understanding the phase behavior, fluctuations and instabilities in nematic semiflexible polymer solutions. While the main focus of this work is understanding of the fundamental physics of semiflexible polymers, the results will also be highly relevant in engineering applications. For example, the study of chain dynamics includes calculating the stress of a polymer under various steady flow conditions and the stress relaxation for a deformed chain. These results will enable us to predict the constitutive behavior of polymer melts and solutions in steady flows as well as their viscoelastic properties. Likewise, one of the problems to be addressed in this research, namely the banding instability in sheared multi-chain liquid crystals, has important consequences in the processing of these materials such as in fiber drawing and injection molding.%%%This grant supports theoretical research on the statistical mechanics of polymers. The use of flexible chain models for polymers, e.g., the freely-jointed chain model, the bead-string or its continuous version of the gaussian model, have contributed considerably to our current understanding of the dynamic and thermodynamic properties of polymers. Many polymer systems, especially biopolymers such as DNA and actin filaments, and main-chain liquid-crystalline polymers, require that the stiffness of the polymer chain be taken into account explicitly. A number of fundamental issues will be addressed in the static and dynamic properties of semiflexible polymers. While the main focus of this work is understanding of the fundamental physics of semiflexible polymers, the results will also be highly relevant in engineering applications. For example, the study of chain dynamics includes calculating the stress of a polymer under various steady flow conditions and the stress relaxation for a deformed chain. These results will enable us to predict the constitutive behavior of polymer melts and solutions in steady flows as well as their viscoelastic properties. Likewise, one of the problems to be addressed in this research, namely the banding instability in sheared multi-chain liquid crystals, has important consequences in the processing of these materials such as in fiber drawing and injection molding.***
9970589王本基金用于聚合物统计力学的理论研究。聚合物柔性链模型的使用,例如,自由连接链模型,串珠链或其连续版本的高斯模型,极大地促进了我们目前对聚合物的动力学和热力学性质的理解。许多聚合物体系,特别是生物聚合物,如DNA和肌动蛋白丝,以及主链液晶聚合物,要求明确考虑聚合物链的刚度。一些基本问题将解决在静态和动态性质的半柔性聚合物。这些包括:(1)了解半柔性聚合物的单链动力学;(2)了解向列场中半柔性链的构象和动力学,重点关注多个发夹;(3)了解向列型半柔性聚合物溶液中的相行为、波动和不稳定性。虽然这项工作的主要重点是了解半柔性聚合物的基本物理性质,但其结果也将与工程应用高度相关。例如,链动力学的研究包括计算聚合物在各种稳定流动条件下的应力和变形链的应力松弛。这些结果将使我们能够预测聚合物熔体和溶液在稳定流动中的本构行为以及它们的粘弹性。同样,本研究要解决的问题之一,即剪切多链液晶中的带状不稳定性,对这些材料的加工,如纤维拉伸和注射成型具有重要影响。这笔经费用于支持聚合物统计力学的理论研究。聚合物柔性链模型的使用,例如,自由连接链模型,串珠链或其连续版本的高斯模型,极大地促进了我们目前对聚合物的动力学和热力学性质的理解。许多聚合物体系,特别是生物聚合物,如DNA和肌动蛋白丝,以及主链液晶聚合物,要求明确考虑聚合物链的刚度。一些基本问题将解决在静态和动态性质的半柔性聚合物。虽然这项工作的主要重点是了解半柔性聚合物的基本物理性质,但其结果也将与工程应用高度相关。例如,链动力学的研究包括计算聚合物在各种稳定流动条件下的应力和变形链的应力松弛。这些结果将使我们能够预测聚合物熔体和溶液在稳定流动中的本构行为以及它们的粘弹性。同样,本研究要解决的问题之一,即剪切多链液晶中的带不稳定性,对这些材料的加工,如纤维拉伸和注射成型具有重要影响。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen-Gang Wang其他文献
Influence of Topology on the Free Energy and Metric Properties of an Ideal Ring Polymer Confined in a Slit
拓扑结构对狭缝中理想环状聚合物自由能和公制性质的影响
- DOI:
10.1021/acs.macromol.5b02026 - 发表时间:
2015-11 - 期刊:
- 影响因子:5.5
- 作者:
Bing Li;Zhao-Yan Sun;Li-Jia An;Zhen-Gang Wang - 通讯作者:
Zhen-Gang Wang
Bioinspired Self-Assembling Materials for Modulating Enzyme Functions
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Peidong Du;Shichao Xu;Zhi-Kang Xu;Zhen-Gang Wang - 通讯作者:
Zhen-Gang Wang
<strong>DNA-Based Self-Assembly for Functional Nanomaterials</strong>
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:
- 作者:
Zhen-Gang Wang;Baoquan Ding; - 通讯作者:
Self-assembly of the de novo designed peptides to produce supramolecular catalysts with built-in enzyme-like active sites: a review of structure–activity relationship
从头设计肽的自组装以产生具有内置酶样活性位点的超分子催化剂:结构-活性关系综述
- DOI:
10.1016/j.mtnano.2023.100302 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:8.200
- 作者:
Yi Lou;Baoli Zhang;Xiangyu Ye;Zhen-Gang Wang - 通讯作者:
Zhen-Gang Wang
Leaching of PVP from PAN/PVP Blending Membranes: A Comparative Study of Asymmetric and Dense Membranes
PAN/PVP 共混膜中 PVP 的浸出:非对称膜和致密膜的比较研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ling-Shu Wan;Zhi-Kang Xu*;Zhen-Gang Wang - 通讯作者:
Zhen-Gang Wang
Zhen-Gang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen-Gang Wang', 18)}}的其他基金
Electronic and Ionic Transport in Block Copolymers
嵌段共聚物中的电子和离子传输
- 批准号:
0965812 - 财政年份:2010
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Block Copolymer Self-Assembly: Morphologies, Thermo-mechanical Behaviors and Kinetic Pathways
嵌段共聚物自组装:形态、热机械行为和动力学途径
- 批准号:
9531914 - 财政年份:1996
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
- 批准号:
23K23887 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




