The Probabilistic Method
概率方法
基本信息
- 批准号:9970822
- 负责人:
- 金额:$ 17.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970822The investigator will continue his study of The Probabilistic Method, a legacy of the late Paul Erdos that remains in a very active stage. The original, and still basic, applications are to discrete mathematics when one wishes to prove the existence of an object having certain properties. Very roughly, a random object is appropriately defined and it is shown that the random object has the desired properties with positive probability. The methodology strongly intersects with the use of randomness in Theoretical Computer Science, the interaction going both ways. If a random algorithm can be proven to have positive chance of success then the existence of a success is guaranteed. Further, the output of random algorithms is very much of interest for its own sake. As the random object evolves there are certain critical regions, dubbed threshold functions, where the probability of events move rapidly from near zero to near one. Using methods from mathematical logic the investigator attempts to describe the possible threshold functions for all events expressible in a given logical language.Randomness is now recognized to play an important role in many computer algorithms. The investigators particularly study packing algorithms. How can a set of partially overlapping requests - for bandwidth, takeoff slots or whatever - be handled to satisfy the maximal number of requests? With the random greedy algorithm the requests are taken in randomly shuffled order and then each is approved if not conflicting with previous approvals. Oftimes this natural and easily implemented algorithm can be shown to give near optimal results though analysis of it has proved to be particularly subtle. A second, though related, area is in percolation effects. Large systems are (often) nonlinear - they undergo a phase transition (liquid to gas, low crime to high crime) which is qualitative as well as quantitative in a surprisingly short period of time. With the appropriate scaling the investigator shall spread out this transition so as better to understand the phenomenon.
9970822研究者将继续研究概率方法,这是已故Paul Erdos的遗产,目前仍处于非常活跃的阶段。 原始的,仍然是基本的,应用程序是离散数学时,人们希望证明存在的一个对象具有某些性质。 非常粗略地,一个随机对象是适当的定义,它是随机对象具有所需的属性与正概率。 该方法与理论计算机科学中随机性的使用有很强的交叉,相互作用是双向的。 如果一个随机算法可以被证明有成功的机会,那么成功的存在是有保证的。 此外,随机算法的输出因其自身原因而非常有趣。 随着随机对象的演化,存在某些临界区域,称为阈值函数,事件的概率从接近零迅速移动到接近1。 使用方法从数理逻辑的调查人员试图描述可能的阈值函数的所有事件表达在一个给定的逻辑语言。随机性现在被认为在许多计算机算法中发挥着重要作用。 研究人员特别研究打包算法。 如何处理一组部分重叠的请求(带宽、起飞时隙或其他)以满足最大数量的请求? 使用随机贪婪算法,请求以随机打乱的顺序进行,然后如果与先前的批准不冲突,则每个请求都被批准。 通常情况下,这种自然和易于实现的算法可以显示出接近最佳的结果,虽然它的分析已被证明是特别微妙的。 第二个相关领域是渗透效应。 大型系统(通常)是非线性的-它们在令人惊讶的短时间内经历了一个定性和定量的相变(液体到气体,低犯罪到高犯罪)。 通过适当的缩放,研究者应展开这种转变,以便更好地理解这种现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Spencer其他文献
Extremal problems, partition theorems, symmetric hypergraphs
极值问题、划分定理、对称超图
- DOI:
10.1007/bf02579336 - 发表时间:
1981-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Joel Spencer - 通讯作者:
Joel Spencer
3043 – CHARACTERIZATION OF THE OSTEOCYTE-REGULATED MICROENVIRONMENTAL INFLUENCES ON B CELL DEVELOPMENT USING TWO-PHOTON IMAGING
- DOI:
10.1016/j.exphem.2021.12.262 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Nastaran Abbasizadeh;Christian Burns;Betsabel Chicana Romero;Jennifer Manilay;Joel Spencer - 通讯作者:
Joel Spencer
Packing random rectangles
- DOI:
10.1007/pl00008793 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:1.600
- 作者:
E.G. Coffman, Jr.;George S. Lueker;Joel Spencer;Peter M. Winkler - 通讯作者:
Peter M. Winkler
Suresums
- DOI:
10.1007/bf02579275 - 发表时间:
1981-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Joel Spencer - 通讯作者:
Joel Spencer
Branching Processes with Negative Offspring Distributions
- DOI:
10.1007/s000260300003 - 发表时间:
2003-06-01 - 期刊:
- 影响因子:0.700
- 作者:
Ioana Dumitriu;Joel Spencer;Catherine Yan - 通讯作者:
Catherine Yan
Joel Spencer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Spencer', 18)}}的其他基金
Mathematical Sciences: The Probabilistic Method
数学科学:概率方法
- 批准号:
9623067 - 财政年份:1996
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Probabilistic Method
数学科学:概率方法
- 批准号:
9300641 - 财政年份:1993
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Probabilistic Method
数学科学:概率方法
- 批准号:
9024870 - 财政年份:1991
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorial Analysis
数学科学:组合分析
- 批准号:
8996100 - 财政年份:1988
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorial Analysis
数学科学:组合分析
- 批准号:
8701795 - 财政年份:1987
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
U.S.-Hungarian Workshop on Asymptotics in Combinatorial Analysis
美国-匈牙利组合分析渐进研讨会
- 批准号:
8316814 - 财政年份:1984
- 资助金额:
$ 17.32万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Analysis
数学科学:组合分析
- 批准号:
8401282 - 财政年份:1984
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
相似国自然基金
偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
- 批准号:72273091
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Integration of a deep probabilistic model and an outlier detection method with an attention mechanism and its application to super-high dimensional time series data
深度概率模型与带有注意力机制的异常值检测方法的集成及其在超高维时间序列数据中的应用
- 批准号:
23H03357 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improvement of X-ray phase imaging method using diffusion probabilistic model
利用扩散概率模型改进X射线相位成像方法
- 批准号:
23K11700 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of probabilistic assessment method for submarine landslide tsunami hazard for the sea area around Japan
日本周边海域海底滑坡海啸灾害概率评估方法的建立
- 批准号:
22H01606 - 财政年份:2022
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ERI: Harnessing Probabilistic Deep Learning Method Integrated with Tailored Features for Enhanced Real-Time Machinery Fault Diagnosis and Prognosis
ERI:利用概率深度学习方法与定制特征相结合,增强实时机械故障诊断和预测
- 批准号:
2138522 - 财政年份:2022
- 资助金额:
$ 17.32万 - 项目类别:
Standard Grant
Development of probabilistic risk assessment method using climate ensembles to consider both flood and drought disasters
开发利用气候集合考虑洪水和干旱灾害的概率风险评估方法
- 批准号:
21J01854 - 财政年份:2021
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of probabilistic risk assessment method for aquatic environmental disasters based on large ensemble climate forecast data
基于大集合气候预报数据的水生环境灾害概率风险评估方法开发
- 批准号:
21K04276 - 财政年份:2021
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Probabilistic Rock Engineering Design Protocols Using the Inverse Method
使用逆向方法开发概率岩石工程设计协议
- 批准号:
532979-2019 - 财政年份:2021
- 资助金额:
$ 17.32万 - 项目类别:
Postdoctoral Fellowships
Development of Probabilistic Rock Engineering Design Protocols Using the Inverse Method
使用逆向方法开发概率岩石工程设计协议
- 批准号:
532979-2019 - 财政年份:2020
- 资助金额:
$ 17.32万 - 项目类别:
Postdoctoral Fellowships
Development of Probabilistic Cost-Benefit Assessment Method for Formal Safety Assessment (FSA)
正式安全评估(FSA)的概率成本效益评估方法的开发
- 批准号:
19K15230 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
- 批准号:
19K15078 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists