Indestructibility Phenomena of Large Cardinals
大红衣主教的坚不可摧现象
基本信息
- 批准号:9970993
- 负责人:
- 金额:$ 7.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970993Hamkins Professor Hamkins will continue his research on the indestructibility phenomena of large cardinals. This work, lying at the common focus of twobroad set-theoretic research efforts, namely, forcing and large cardinals,seems particularly promising in light of the recent advances that haveemerged from his earlier work with gap forcing and the lottery preparation.Specifically, Professor Hamkins will investigate a series of open questionsconcerning the extent to which indestructibility is possible with variouskinds of large cardinals, with a particular focus on the strongly compactcardinals. In addition to this work, he will continue his work on two otherprojects, the automorphism tower problem and the new theory of infinite timeTuring machines, a model of infinitary computation. Professor Hamkins' research involves the study of the sublime, inaccessible notions of mathematical infinity, which have fascinated mathematicians for centuries. In the twentieth century, particularly in the past thirty years, set theorists have gained a profound understandingof the largest of these transfinite numbers, large cardinals. ProfessorHamkins has been particularly interested in how large cardinals areaffected by forcing, the technique invented by Paul Cohen by which settheorists have had glimpses into alternative mathematical universes andrealized the rich diversity of mathematical possibility. Much of his worktherefore lies in the common focus of two major set-theoretic researchefforts, namely, forcing and large cardinals. He will endeavor toinvestigate the curious indestructibility phenomena of these cardinals, bywhich their largeness survives in a wide variety of mathematical universes. ***
小行星9970993 哈姆金斯教授将继续他对大红雀的不灭现象的研究。 这项工作,躺在两个broad集理论的研究工作,即共同的焦点,迫使和大型基数,似乎特别有前途的光,最近的进展,已经出现了从他的早期工作与差距迫使和彩票准备。具体而言,教授Hamkins将调查一系列悬而未决的问题,在何种程度上不灭性是可能的各种大型基数,with a particular特定focus焦点on the strongly强compactcardinals紧cardinals枢机主教. 除了这项工作,他将继续他的工作对两个otherprojects,自同构塔问题和新理论的无限时间图灵机,模型的无限计算。 哈姆金斯教授的研究涉及到数学无穷大的崇高的、难以理解的概念,这些概念几个世纪以来一直吸引着数学家。 在20世纪,特别是在过去的30年里,集合理论家已经对这些超限数中最大的一个,即大基数,有了深刻的理解。 Hamkins教授一直特别感兴趣的是大基数如何受到强迫的影响,这是Paul Cohen发明的一种技术,集合理论家通过这种技术瞥见了替代的数学宇宙,并实现了数学可能性的丰富多样性。 因此,他的大部分工作都集中在两个主要的集合论研究成果中,即强迫和大基数。 他将奋进调查这些红衣主教的奇怪的不灭现象,他们的大生存在各种各样的数学宇宙。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Hamkins其他文献
Geometric properties of the Riemann surfaces associated with the Noumi- Yamada systems with a large parameter
与大参数 Noumi-Yamada 系统相关的黎曼曲面的几何性质
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Joan Bagaria;Joel Hamkins;Konstantinos Tsapronis;Toshimichi Usuba;Akihito Wachi;Takeshi Takaishi;I. Sato;Takashi Aoki and Naofumi Honda - 通讯作者:
Takashi Aoki and Naofumi Honda
Bayesian Communication Leading to a Nash Equilibrium
贝叶斯通讯导致纳什均衡
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Joan Bagaria;Joel Hamkins;Konstantinos Tsapronis;Toshimichi Usuba;Akihito Wachi;Takeshi Takaishi;I. Sato;Takashi Aoki and Naofumi Honda;T. Matsuhisa and P. Strokan. - 通讯作者:
T. Matsuhisa and P. Strokan.
Superstrong and strong cardinals are never indestructible
超强和强红衣主教从来都不是坚不可摧的
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0.3
- 作者:
Joan Bagaria;Joel Hamkins;Konstantinos Tsapronis;Toshimichi Usuba - 通讯作者:
Toshimichi Usuba
q-Analogues of dimension formula and the SLP
q-维数公式和 SLP 的类似物
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Joan Bagaria;Joel Hamkins;Konstantinos Tsapronis;Toshimichi Usuba;Akihito Wachi - 通讯作者:
Akihito Wachi
New proofs for Levine's theorems
莱文定理的新证明
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:1.1
- 作者:
Joan Bagaria;Joel Hamkins;Konstantinos Tsapronis;Toshimichi Usuba;Akihito Wachi;Takeshi Takaishi;I. Sato - 通讯作者:
I. Sato
Joel Hamkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Hamkins', 18)}}的其他基金
相似海外基金
Extracting subtle hints for new phenomena at the Large Hadron Collider
在大型强子对撞机中提取新现象的微妙暗示
- 批准号:
DP230101142 - 财政年份:2023
- 资助金额:
$ 7.44万 - 项目类别:
Discovery Projects
Applying large eddy simulation to dissipative particle dynamics modeling toward better understanding of complex flow phenomena
将大涡模拟应用于耗散粒子动力学建模,以更好地理解复杂的流动现象
- 批准号:
22K03904 - 财政年份:2022
- 资助金额:
$ 7.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: SICB 2023 Symposium: Large-scale phenomena arising from small-scale biophysical processes
会议:SICB 2023 研讨会:小规模生物物理过程产生的大规模现象
- 批准号:
2233770 - 财政年份:2022
- 资助金额:
$ 7.44万 - 项目类别:
Standard Grant
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
- 批准号:
535327-2019 - 财政年份:2021
- 资助金额:
$ 7.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improvement of triboelectricf power generator output and study of tribological phenomena in large electricfield
摩擦发电机输出功率的提高及大电场中摩擦现象的研究
- 批准号:
21H01240 - 财政年份:2021
- 资助金额:
$ 7.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
- 批准号:
535327-2019 - 财政年份:2020
- 资助金额:
$ 7.44万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
- 批准号:
535327-2019 - 财政年份:2019
- 资助金额:
$ 7.44万 - 项目类别:
Postgraduate Scholarships - Doctoral
Study on the flow elasticity phenomena of multiple vertically placed large diameter bore pipes under the current.
多根垂直放置大口径管道水流下流动弹性现象研究
- 批准号:
17H03500 - 财政年份:2017
- 资助金额:
$ 7.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
- 批准号:
1712632 - 财政年份:2017
- 资助金额:
$ 7.44万 - 项目类别:
Standard Grant
Further understanding of high-energy astronomical phenomena by operating the large-aperture atmospheric Cherenkov gamma-ray telescopes
通过操作大口径大气切伦科夫伽马射线望远镜进一步了解高能天文现象
- 批准号:
17H01126 - 财政年份:2017
- 资助金额:
$ 7.44万 - 项目类别:
Grant-in-Aid for Scientific Research (A)