Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
基本信息
- 批准号:1712632
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The quantitative description of many natural phenomena, as well as modeling and forecasting, is invariably rooted in rigorous mathematics. Probability turns out to be a particularly useful tool as it has, by its very nature, the means to deal with systems consisting of a large number of individual constituents. The present project addresses questions that arise at the interface of probability and statistical mechanics whose common feature is a simple definition, interesting physical phenomena and a substantive challenge for mathematics. The specific problems start with the consideration of complex microscopic systems such as interacting random fields, random walks, local times and percolation. Their analysis aims to demonstrate that, under the conditions when the system size tends to infinity, a new structure, or a new degree of regularity, naturally emerges. The resulting object, often referred to as the scaling limit, is then studied using the methods of analysis. A crucial point is that many microscopic systems lead to the same scaling limit. This fact, sometimes referred to as universality, is one of the cornerstones of our understanding of large systems. The project also includes education and training of students.The project is naturally divided into three specific subject areas. The first of these concerns the extrema of logarithmically-correlated spatial processes. The goal here is to establish a level of universality of the recent findings for the Gaussian Free Field by extending them to other processes such as the local time of random walks and gradient fields. Gradient fields are then to be studied also in their own right in a number of specific contexts. The unifying theme here is to find ways to get around the restriction of the existing theory to strictly convex interactions. The third area focuses on more traditional subjects of bootstrap percolation, where the goal is to use scaling-limit ideas to establish a sharp threshold in a disordered model, and positional long-range order, where the aim is to prove crystallization in a specific model of an interacting gas. The stated problems draw on recent advances in the field, some of which are due to PI, and they bear strong connections to the theory of disordered systems, extreme-order statistics, random geometry, homogenization, etc. Each of the subareas has clearly delineated objectives of varied level of difficulty. Many of these have been designed with the aim to include graduate students and postdocs in research.
对许多自然现象的定量描述,以及建模和预测,总是植根于严格的数学。事实证明,概率是一个特别有用的工具,因为就其本质而言,它具有处理由大量单个成分组成的系统的手段。本项目解决的问题,出现在概率和统计力学的共同特点是一个简单的定义,有趣的物理现象和数学的实质性挑战的接口。具体的问题开始考虑复杂的微观系统,如相互作用的随机场,随机行走,当地时间和渗流。他们的分析旨在证明,在系统规模趋于无穷大的条件下,一种新的结构或新的规律性程度自然会出现。由此产生的对象,通常被称为缩放限制,然后使用分析的方法进行研究。关键的一点是,许多微观系统导致相同的标度极限。这个事实,有时被称为普遍性,是我们理解大系统的基石之一。该项目还包括对学生的教育和培训,该项目自然分为三个具体的主题领域。其中第一个涉及的极值的空间相关的过程。这里的目标是建立一个普遍性的水平,最近发现的高斯自由场,将它们扩展到其他过程,如本地时间的随机游动和梯度场。梯度场,然后也被研究在自己的权利,在一些特定的情况下。这里的统一主题是找到方法来绕过现有理论对严格凸相互作用的限制。第三个领域侧重于更传统的自举渗滤的主题,其目标是使用缩放限制的想法来建立一个无序模型中的尖锐阈值,以及位置长程有序,其目的是证明相互作用气体的特定模型中的结晶。所述问题借鉴了该领域的最新进展,其中一些是由于PI,它们与无序系统理论,极端顺序统计,随机几何,均匀化等有着密切的联系。每个子领域都有明确的目标,不同程度的难度。其中许多都是为了包括研究生和博士后的研究而设计的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An invariance principle for one-dimensional random walks among dynamical random conductances
动态随机电导中一维随机游走的不变性原理
- DOI:10.1214/19-ejp348
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Biskup, Marek
- 通讯作者:Biskup, Marek
Exceptional points of two-dimensional random walks at multiples of the cover time
覆盖时间倍数处二维随机游走的异常点
- DOI:10.1007/s00440-022-01113-4
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Abe, Yoshihiro;Biskup, Marek
- 通讯作者:Biskup, Marek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marek Biskup其他文献
On support sets of the critical Liouville Quantum Gravity
关于临界刘维尔量子引力的支持集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Marek Biskup;Stephan Gufler;O. Louidor - 通讯作者:
O. Louidor
Long-time tails in the parabolic Anderson model with bounded potential
具有有限潜力的抛物线安德森模型中的长期尾部
- DOI:
10.1214/aop/1008956688 - 发表时间:
2000 - 期刊:
- 影响因子:2.3
- 作者:
Marek Biskup;Wolfgang Koenig - 通讯作者:
Wolfgang Koenig
Eigenvalue Fluctuations for Lattice Anderson Hamiltonians
格子安德森哈密顿量的特征值涨落
- DOI:
10.1137/14097389x - 发表时间:
2016 - 期刊:
- 影响因子:2
- 作者:
Marek Biskup;Ryoki Fukushima;and Wolfgang Koenig - 通讯作者:
and Wolfgang Koenig
Parallel interactive data analysis with PROOF
使用 PROOF 进行并行交互式数据分析
- DOI:
10.1016/j.nima.2005.11.100 - 发表时间:
2006 - 期刊:
- 影响因子:1.4
- 作者:
Maarten Ballintijn;Marek Biskup;R. Brun;P. Canal;D. Feichtinger;G. Ganis;Günter Kickinger;A. Peters;F. Rademakers - 通讯作者:
F. Rademakers
A Central Limit Theorem for the Effective Conductance: Linear Boundary Data and Small Ellipticity Contrasts
有效电导的中心极限定理:线性边界数据和小椭圆率对比
- DOI:
10.1007/s00220-014-2024-y - 发表时间:
2012 - 期刊:
- 影响因子:2.4
- 作者:
Marek Biskup;Michele Salvi;T. Wolff - 通讯作者:
T. Wolff
Marek Biskup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marek Biskup', 18)}}的其他基金
Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
- 批准号:
1954343 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Interacting Particle Systems, Statistical Mechanics, and Related Topics
相互作用的粒子系统、统计力学及相关主题
- 批准号:
1850957 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
- 批准号:
1407558 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Travel support for participation at the 6th Prague Summer School on Mathematical Statistical Physics
参加第六届布拉格数理统计物理暑期学校的差旅支持
- 批准号:
1144348 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Large scale phenomena in models of statistical mechanics
统计力学模型中的大规模现象
- 批准号:
1106850 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
- 批准号:
0949250 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
- 批准号:
0806198 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
- 批准号:
0505356 - 财政年份:2005
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Conference: SICB 2023 Symposium: Large-scale phenomena arising from small-scale biophysical processes
会议:SICB 2023 研讨会:小规模生物物理过程产生的大规模现象
- 批准号:
2233770 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
- 批准号:
535327-2019 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
- 批准号:
535327-2019 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
- 批准号:
535327-2019 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Postgraduate Scholarships - Doctoral
Large-scale first-principles simulations of non-adiabatic and non-equilibrium phenomena in nano-structured materials
纳米结构材料中非绝热和非平衡现象的大规模第一原理模拟
- 批准号:
16K05478 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
- 批准号:
1407558 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
CDS&E:A large-scale data discovery framework for understanding intermittent, performance-critical phenomena in simulations of offshore wind turbines
CDS
- 批准号:
1306869 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Spontaneous flow pattern formation in fluids --- singularity and large scale flow phenomena
流体中自发流型的形成——奇点和大规模流动现象
- 批准号:
24340016 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical Study of Magnetic-Field-Induced Anomalous Quantum Phenomena of Frustrated Magnets by Large-Scale Parallel Calculations
通过大规模并行计算对受抑磁体的磁场感应反常量子现象进行理论研究
- 批准号:
24540348 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large scale phenomena in models of statistical mechanics
统计力学模型中的大规模现象
- 批准号:
1106850 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant