Non-Linear Aspects of the Geometry of Convex Sets
凸集几何的非线性方面
基本信息
- 批准号:9971202
- 负责人:
- 金额:$ 5.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-9971202Principal Investigator: Paul Goodey and Marilyn BreenMarilyn Breen will continue her work on visibility problems inEuclidean space. These will focus on Helly-type theorems and areaimed at determining whether or not a set is starshaped. A majorobjective is to extend Krasnosel'skii's theorem beyond thesetting of compact sets. Paul Goodey's work will focus on thedetermination of high dimensional geometric information from lowdimensional data. This data usually arises from sections orprojections of the high dimensional object. In recent years somesurprising connections between projections and sections haveemerged. He will try to find further connections and to obtain asystematic explanation of these phenomena. It is anticipatedthat the techniques to be used will be drawn from harmonicanalysis, group representation theory and classical convexgeometry.The geometric questions to be considered under this grant haveapplications in quite diverse areas. At a purely geometriclevel, the study of visibility questions is connected withrobotics. Helly-type theorems have been shown to havesignificance for geometric optimization algorithms. In fact,Helly numbers determine bounds for the speed at which certainalgorithms proceed. Reconstruction of objects from lowdimensional data lies at the heart of stereology and tomography.The study of sections, in this context, amounts to studyingslices of the object under consideration. The ability to obtaininformation about the original object from these slices hasimplications throughout geosciences and in medical research, forexample. Projections of objects are synonymous with X-rays.Some of the projects to be addressed will have implications forthe reconstruction of objects from their X-rays and for thedesign of efficient algorithms to achieve such reconstruction.
摘要奖:DMS-9971202首席研究员:Paul Goodey和Marilyn BreenMarilyn Breen将继续她在欧几里得空间能见度问题上的工作。这些将集中在Helly-型定理上,旨在确定一个集合是否为星形的。一个主要目的是将Krasnosel‘skii定理推广到紧集以外。Paul Goodey的工作将集中在从低维数据中确定高维几何信息。这些数据通常来自高维对象的截面或投影。近年来,投影和截面之间出现了一些惊人的联系。他将试图找到更多的联系,并获得对这些现象的系统解释。预计将使用的技术将来自调和分析、群表示理论和经典凸几何。在这项拨款下要考虑的几何问题在相当不同的领域有应用。在纯粹的几何层面上,能见度问题的研究与机器人学有关。Helly-型定理已被证明对几何优化算法具有重要意义。事实上,Helly数决定了某些算法进行的速度界限。从低维数据重建物体是体视学和层析成像的核心。在这种情况下,对切片的研究相当于研究所考虑的物体的切片。从这些切片中获取有关原始物体的信息的能力在整个地球科学和医学研究中都是如此。物体的投影是X射线的同义词。一些有待解决的项目将对从X射线重建物体以及设计有效的算法来实现这种重建产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Goodey其他文献
Section and projection means of convex bodies
- DOI:
10.1007/bf01312454 - 发表时间:
1998-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Paul Goodey;Markus Kiderlen;Wolfgang Weil - 通讯作者:
Wolfgang Weil
Directed Projection Functions of Convex Bodies (Monatsh. Math. 149, 43–64 (2006))
- DOI:
10.1007/s00605-006-0399-3 - 发表时间:
2006-08-21 - 期刊:
- 影响因子:0.800
- 作者:
Paul Goodey;Wolfgang Weil - 通讯作者:
Wolfgang Weil
Translative and Kinematic Integral Formulae for Support Functions II
支撑函数的平移和运动积分公式 II
- DOI:
10.1023/a:1024912419608 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Paul Goodey;Wolfgang Weil - 通讯作者:
Wolfgang Weil
Translative integral formulae for convex bodies
- DOI:
10.1007/bf01840124 - 发表时间:
1987-02-01 - 期刊:
- 影响因子:0.700
- 作者:
Paul Goodey;Wolfgang Weil - 通讯作者:
Wolfgang Weil
Directed Projection Functions of Convex Bodies
- DOI:
10.1007/s00605-005-0362-8 - 发表时间:
2006-02-27 - 期刊:
- 影响因子:0.800
- 作者:
Paul Goodey;Wolfgang Weil - 通讯作者:
Wolfgang Weil
Paul Goodey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Goodey', 18)}}的其他基金
Mathematical Sciences: Non-Linear Aspects of the Geometry of Convex Sets
数学科学:凸集几何的非线性方面
- 批准号:
9504249 - 财政年份:1995
- 资助金额:
$ 5.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Aspects of the Geometry of Convex Sets
数学科学:凸集几何的非线性方面
- 批准号:
9207019 - 财政年份:1992
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
U.S.-Germany Cooperative Research into the Geometry of Convex Sets
美德合作研究凸集几何
- 批准号:
9123373 - 财政年份:1992
- 资助金额:
$ 5.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Experimental Mathematics
数学科学:实验数学
- 批准号:
9100940 - 财政年份:1991
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
Mathematical Sciences: REU: Experimental Mathematics
数学科学:REU:实验数学
- 批准号:
9000624 - 财政年份:1990
- 资助金额:
$ 5.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-linear Aspects of the Geometry ofConvex Sets
数学科学:凸集几何的非线性方面
- 批准号:
8908717 - 财政年份:1989
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 5.43万 - 项目类别:
Research Grant
Aspects of well-possedeness and long time behavior for non-linear PDEs
非线性偏微分方程的完备性和长时间行为
- 批准号:
1362467 - 财政年份:2014
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
Aspects of non-archimedian non-linear analysis and functional analysis
非阿基米德非线性分析和泛函分析方面
- 批准号:
118701543 - 财政年份:2009
- 资助金额:
$ 5.43万 - 项目类别:
Research Grants
Analytical and Geometrical Aspects of Non Linear Partial Differential Equations
非线性偏微分方程的解析和几何方面
- 批准号:
0140338 - 财政年份:2002
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
Analytical Aspects of Some Non-Linear Mathematical Models
一些非线性数学模型的分析方面
- 批准号:
9714758 - 财政年份:1997
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Linear Aspects of the Geometry of Convex Sets
数学科学:凸集几何的非线性方面
- 批准号:
9504249 - 财政年份:1995
- 资助金额:
$ 5.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-linear Aspects of the Geometry ofConvex Sets
数学科学:凸集几何的非线性方面
- 批准号:
8908717 - 财政年份:1989
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
Non-Linear and Two-Dimensional Aspects of Multicritical Dynamics (Materials Research)
多临界动力学的非线性和二维方面(材料研究)
- 批准号:
8506009 - 财政年份:1986
- 资助金额:
$ 5.43万 - 项目类别:
Continuing Grant
Plasma Research in Non-Linear Aspects of Instabilities, Using Computer-Model Experiments and Beam-Plasma Interactions
利用计算机模型实验和束-等离子体相互作用对不稳定性的非线性方面进行等离子体研究
- 批准号:
660F230 - 财政年份:1966
- 资助金额:
$ 5.43万 - 项目类别:
Study on the Non-Linear Aspects in Barium Titanate
钛酸钡非线性方面的研究
- 批准号:
650F201 - 财政年份:1965
- 资助金额:
$ 5.43万 - 项目类别:














{{item.name}}会员




