Analytical Aspects of Some Non-Linear Mathematical Models
一些非线性数学模型的分析方面
基本信息
- 批准号:9714758
- 负责人:
- 金额:$ 32.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706260 Caffarelli The project involves free boundary problems and optimal transportation. Free boundary problems arise naturally when a constitutive relation or a conserved quantity (a temperature, a pressure, a density) changes discontinuously its behavior across some value of the variables under consideration. Typical examples are solid-liquid interphases, burnt-unburnt mixtures in flame propagation, and flow in porous media. Understanding of the geometry and stability of the solution and its interphase is important to select and evaluate simulation methods, as well as to understand the models themselves. The theory of optimal transporation discusses how to transport a variable x from a state S to a state T in a least expensive fashion (or how nature would do so). The variable x could represent goods, trainees, information, or, as in the quasi-geostrophic model, optimal disposition of air masses. The links of these models to non-linear partial differential equations need much further exploration. The focus is on several fundamental problems of nonlinear analysis in two areas: fast and abrupt transitions, allocation and optimal transportation theory. Fast and abrupt transitions occur in many fields. Typical examples are the evolution of solid-liquid interphases in melting or solidification, the propagation of gases or fluids in porous media or the elastic to plastic transition in some materials in continuum mechanics. In the field of financial mathematics there is the threshold state of variables after which an option is executed, a good is restocked, or, in short, when a "discontinuous" decision is taken. We study the stability of such processes, the way to simulate them numerically, etc. The second area of interest consists of the equations that model optimal transportation. This arises for instance when goods must be delivered from one set of locations (warehouses) to another (distribution points). Of course we want to do it minimizing transp ortation costs. Not surprisingly, the basic equations governing this problem reappear in meteorology (the quasi-geostrophic equations of front formation), where air masses "transport" themselves optimally, and in the numerical simulation of different fluid flows (lubrication, bubbles in fluids, etc.). We hope that this approach will provide a new understanding of the phenomena and better computational techniques.
9706260 Caffarelli 该项目涉及自由边界问题和最优运输。 当本构关系或守恒量(温度、压力、密度)在所考虑的变量的某个值上不连续地改变其行为时,自然会出现自由边界问题。 典型的例子是固-液界面、火焰传播中的燃烧-未燃烧混合物和多孔介质中的流动。 了解溶液及其界面的几何形状和稳定性对于选择和评估模拟方法以及理解模型本身都很重要。 最优运输理论讨论了如何以最便宜的方式将变量x从状态S运输到状态T(或者自然界如何做到这一点)。 变量x可以代表货物、受训人员、信息,或者像在准地转模式中那样,代表气团的最佳配置。这些模型的非线性偏微分方程的联系需要进一步的探索。 重点是在两个领域的非线性分析的几个基本问题:快速和突然的转变,分配和最优运输理论。 许多领域都存在快速而突然的转变。 典型的例子是熔化或凝固过程中固-液界面的演化,多孔介质中气体或流体的传播,或连续介质力学中某些材料的弹性到塑性转变。在金融数学领域,存在一个变量的阈值状态,在此状态之后,期权被执行,商品被重新进货,或者,简而言之,当做出“不连续”决策时。我们研究这些过程的稳定性,数值模拟的方法等。第二个感兴趣的领域包括模型最优运输的方程。 例如,当货物必须从一组地点(仓库)交付到另一组地点(分销点)时,就会出现这种情况。 我们当然想把运输成本降到最低。 毫不奇怪,管理这个问题的基本方程在气象学中再次出现( 锋面形成的准地转方程),其中空气质量最佳地“运输”自己,以及不同流体流动的数值模拟(润滑,流体中的气泡等)。 我们希望这种方法将提供一个新的理解的现象和更好的计算技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Caffarelli其他文献
Global C1,α regularity for Monge-Ampère equation and convex envelope
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Luis Caffarelli;Lan Tang;Xu-Jia Wang - 通讯作者:
Xu-Jia Wang
Luis Caffarelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Caffarelli', 18)}}的其他基金
Non-Linear Diffusion Modeling: From Geometry, to Materials, to Social Dynamics
非线性扩散建模:从几何到材料,再到社会动力学
- 批准号:
2000041 - 财政年份:2020
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Analytical and geometrical properties of non linear diffusion equations
非线性扩散方程的分析和几何性质
- 批准号:
1500871 - 财政年份:2015
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Current Trends in Analysis and Partial Differential Equations
分析和偏微分方程的当前趋势
- 批准号:
1540162 - 财政年份:2015
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
- 批准号:
1160802 - 财政年份:2012
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065926 - 财政年份:2011
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Analytical and Geometrical Problems in Non Linear Partial Differential Equations
非线性偏微分方程中的解析和几何问题
- 批准号:
0654267 - 财政年份:2007
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
On the Homogenization of some Free Boundary Problems
一些自由边界问题的齐次化
- 批准号:
0456647 - 财政年份:2005
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Analytical and Geometrical Aspects of Non Linear Partial Differential Equations
非线性偏微分方程的解析和几何方面
- 批准号:
0140338 - 财政年份:2002
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-linear Partial Differential Equations
数学科学:非线性偏微分方程
- 批准号:
9401168 - 财政年份:1994
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Park City/IAS Mathematics Institute
数学科学:帕克城/IAS 数学研究所
- 批准号:
9402739 - 财政年份:1994
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Some Analytical Aspects of the Theory of Integrable Systems
可积系统理论的一些分析方面
- 批准号:
1955265 - 财政年份:2020
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
Some Analytical Aspects of the Theory of Integrable Systems
可积系统理论的一些分析方面
- 批准号:
1700261 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Some Analytical Aspects of the Theory of Integrable Systems
可积系统理论的一些分析方面
- 批准号:
1361856 - 财政年份:2014
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Some Analytical Aspects of the Theory of Integrable Systems
可积系统理论的一些分析方面
- 批准号:
1001777 - 财政年份:2010
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Some Analytical Aspects of the Theory of Integrable Systems
可积系统理论的一些分析方面
- 批准号:
0701768 - 财政年份:2007
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Experimental and analytical studies of some aspects of power system hybridization
电力系统混合化若干方面的实验与分析研究
- 批准号:
43814-2002 - 财政年份:2006
- 资助金额:
$ 32.34万 - 项目类别:
Discovery Grants Program - Individual
Experimental and analytical studies of some aspects of power system hybridization
电力系统混合化若干方面的实验与分析研究
- 批准号:
43814-2002 - 财政年份:2005
- 资助金额:
$ 32.34万 - 项目类别:
Discovery Grants Program - Individual
Some Analytical Aspects of the Theory of Integrable Systems
可积系统理论的一些分析方面
- 批准号:
0401009 - 财政年份:2004
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
Experimental and analytical studies of some aspects of power system hybridization
电力系统混合化若干方面的实验与分析研究
- 批准号:
43814-2002 - 财政年份:2004
- 资助金额:
$ 32.34万 - 项目类别:
Discovery Grants Program - Individual
Experimental and analytical studies of some aspects of power system hybridization
电力系统混合化若干方面的实验与分析研究
- 批准号:
43814-2002 - 财政年份:2003
- 资助金额:
$ 32.34万 - 项目类别:
Discovery Grants Program - Individual