Methodology For Analyzing Spatial Data
空间数据分析方法
基本信息
- 批准号:9971206
- 负责人:
- 金额:$ 15.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, considerable interest has begun to focus on spatial data problems. The statistician finds an excitingopportunity to expand the current analytical repertoire, which is dominated by descriptive summary and ad hoc inferenceprocedures. Bringing formal stochastic modeling and the resultant full inference which becomes available, to the analysis of spatial data becomes attractive. Fully model-basedapproaches offer challenges both in supplying a sufficientlyflexible framework and fitting models within such a framework.The proposed research considers three such challenging problems.They are (i) the handling of misaligned data layers which ariseswhen there is interest in relating variables which are collectedfrom different sources and these sources use different arealpartitions of a region, (ii) the handling of bivariate (and, moregenerally, multivariate) spatial processes arising for theobserved data or as latent (second stage) processes in a hierarchical model, and (iii) the handling of large spatialdatasets within the so-called "geostatistical" perspectivewhich, using first or second stage Gaussian specifications,presents a likelihood whose evaluation requires high-dimensional matrix inversion.Spatial data arises in many fields of application. For instance,in ecology and evolutionary biology, investigation of the processof deforestation is an important area. Such a process inherentlyexhibits spatial pattern which evolves over time and hence connects to federal strategic interest in environmental and global change(EGCH). It is of interest to use socioeconomic information inaddition to physical features of the land area to understand thisprocess. In financial/real estate applications it is of interestto index residential propery values. The familiar maxim, "location,location, location" anticipates spatial association in housing prices.In epidemiology one seeks to identify spatial patterns/clustering ofdisease incidence in order to assess areas of high risk. Incidencerates have to be adjusted to reflect differences in populationsize and exposure to risk factors. In all of these applications simple descriptive summary of the collected data will not be adequate. Rather, one needs to make inference, e.g., to assess which factors explain the deforestation, to predict the price of a home when it goes on the market, to conclude that a particular area is at a significantly higher risk for a particular disease. The research under this grant support proposes the use of probabilistic modeling to address these questions. Appropriate specification of, fitting of and drawing inference under such models are the objectives.
最近,相当大的兴趣开始聚焦于空间数据问题。统计学家找到了一个令人兴奋的机会来扩展目前以描述性总结和特别推理程序为主的分析曲目。将形式化的随机建模和由此产生的完全推理引入到空间数据的分析中,变得很有吸引力。完全基于模型的方法在提供足够灵活的框架和在这样的框架内拟合模型方面都提供了挑战。所提出的研究考虑了三个这样的挑战问题。它们是:(I)当对从不同来源收集的相关变量感兴趣并且这些来源使用区域的不同区域分区时出现的未对齐的数据层的处理;(Ii)对于观测数据产生的二变量(以及更一般地,多变量)空间过程的处理,或者作为分层模型中的潜在(第二阶段)过程的处理;以及(Iii)在所谓的使用第一阶段或第二阶段高斯规范的地统计学角度内的大空间数据集的处理,提出了一种似然估计,其计算需要高维矩阵求逆。空间数据产生于许多应用领域。例如,在生态学和进化生物学中,对森林砍伐过程的调查是一个重要的领域。这种过程固有地表现出随时间演变的空间模式,因此与联邦在环境和全球变化(EGCH)中的战略利益有关。除了土地的自然特征外,利用社会经济信息来理解这一过程是很有意义的。在金融/房地产应用中,编制住宅物业价值指数是很有意义的。人们熟悉的格言“位置,位置,位置”预测了房价的空间关联。在流行病学中,人们试图确定疾病发病率的空间模式/聚集性,以便评估高危地区。吸毒率必须进行调整,以反映人口规模和暴露于风险因素的差异。在所有这些应用中,对收集的数据进行简单的描述性总结是不够的。相反,人们需要做出推断,例如,评估哪些因素可以解释森林砍伐,预测房屋上市时的价格,得出特定地区患特定疾病的风险明显更高的结论。这项赠款资助下的研究建议使用概率建模来解决这些问题。目标是在这样的模型下进行适当的规范、拟合和绘图推理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Gelfand其他文献
ON B AYESIAN N ONPARAMETRICS
贝叶斯非参数
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Isadora Antoniano Villalobos;Julyan Arbel;R. Argiento;Eric Barat;Federico Bassetti;Abhishek Bhattacharya;Anirban Bhattacharya;Pier Giovanni Bissiri;N. Bochkina;Eunice Campir´an;François Caron;Alessandro Carta;Ismael Castillo;A. Cerquetti;J. Ciera;Enkeleda Cuko;P. Blasi;Maria De Iorio;Jos´e C.S. de Miranda;D. Dey;Emanuele Dolera;Chang Dorea;Arnaud Doucet;D. Dunson;O. Dakkak;Michael Escobar;Stefano Favaro;Marian Farah;Giorgio Ferrari;Emily B. Fox;Kassandra M. Fronczyk;Mauro Gasparini;Alan Gelfand;Z. Ghahramani;S. Ghosal;D. Giannikis;Peter Green;Jim Griffin;A. Guglielmi;M. Guindani;G. Hadjicharalambous;Timothy Hanson;Spyridon J. Hatjispyros;Daniel Heinz;Ricardo Henao;G. Hermansen;Amy H. Herring;Nils Lid Hjort;Peter Hoff;Chris C. Holmes;Susan Holmes;Silvano Holzer;Zhaowei Hua;Sam Hui;Rosalba Ignaccolo;D. Imparato;Lancelot F. James;Alejandro Jara;Michael I. Jordan;Arbel Julyan;M. Kalli;G. Karabatsos;Dohyun Kim;Gwangsu Kim;Yong;B. Kleijn;B. Knapik;M. Kolossiatis;W. Kruijer;L. Ladelli;Heng Lian;A. Lijoi;A. Lo;Claudio Macci;S. MacEachern;Andrea Martinelli;Takashi Matsumoto;Karla Medina;Silvia Montagna;Pietro Muliere;Peter M¨uller;Consuelo Nava;L. Nieto;Mexico Itam;Bernardo Nipoti;Andriy Norets;A. Ongaro;Peter Orbanz;Antonio A. Ortiz Barranon;Kosuke Ota;O. Papaspiliopoulos;G. Peccati;Sonia Petrone;Giovanni Pistone;M. J. Polidoro;Cecilia Prosdocimi;Igor Pr¨unster;Anthony P. Quinn;Fernando A. Quintana;Sandra Ramos;E. Regazzini;Eva Riccomagno;Gareth Roberts;Abel Rodriguez;Carlos E. Rodriguez;Alex Rojas;J. Rousseau;Daniel M. Roy;Matteo Ruggiero;B. Scarpa;B. Shahbaba;Dario Spanò;Mark Steel;Erik B. Sudderth;Matthew A. Taddy;Y. W. Teh;Aleksey Tetenov Collegio;Italy Carlo Alberto;L. Trippa;Stephen G. Walker;A. Wedlin;Sinead Williamson;Fei Xiang;Hao Wu;Oliver Zobay - 通讯作者:
Oliver Zobay
Alan Gelfand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Gelfand', 18)}}的其他基金
Travel Support for the 8th Valencia/ISBA World Meeting on Bayesian Statistics
第八届巴伦西亚/ISBA 贝叶斯统计世界会议的差旅支持
- 批准号:
0603808 - 财政年份:2006
- 资助金额:
$ 15.73万 - 项目类别:
Standard Grant
Collaborative Research on Bayesian Nonparametric Methods for Spatial and Spatiotemporal Data
时空数据贝叶斯非参数方法的协作研究
- 批准号:
0504953 - 财政年份:2005
- 资助金额:
$ 15.73万 - 项目类别:
Standard Grant
Collaborative QEIB Research: Spatio-temporal Modeling of Species Distributions and Biodiversity at High Resolution - Integrating Population and Climate Responses
QEIB 合作研究:高分辨率物种分布和生物多样性时空建模 - 整合人口和气候响应
- 批准号:
0516198 - 财政年份:2005
- 资助金额:
$ 15.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Hierarchical Model Determination
数学科学:层次模型确定中的问题
- 批准号:
9625383 - 财政年份:1996
- 资助金额:
$ 15.73万 - 项目类别:
Continuing Grant
Mathematical Sciences:Regional Conference on "Bayesian Methods in Finite Population Sampling Theory"
数学科学:“有限总体抽样理论中的贝叶斯方法”区域会议
- 批准号:
9312931 - 财政年份:1994
- 资助金额:
$ 15.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Strategies for Bayesian Data Analysiswith Application to Quantal Bioassay and Geographic Disease Occurrence Models
数学科学:贝叶斯数据分析策略及其在量子生物测定和地理疾病发生模型中的应用
- 批准号:
9301316 - 财政年份:1993
- 资助金额:
$ 15.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sampling Based Methods for Bayesian Computation
数学科学:基于采样的贝叶斯计算方法
- 批准号:
8918563 - 财政年份:1990
- 资助金额:
$ 15.73万 - 项目类别:
Standard Grant
Mathematical Sciences Research Equipment 1990
数学科学研究设备1990
- 批准号:
9001488 - 财政年份:1990
- 资助金额:
$ 15.73万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Methods for inferring and analyzing gene regulatory networks using single-cell multiomics and spatial genomics data
使用单细胞多组学和空间基因组学数据推断和分析基因调控网络的方法
- 批准号:
10712174 - 财政年份:2023
- 资助金额:
$ 15.73万 - 项目类别:
Predictive Methods for Analyzing High-throughput Data and Spatial-Temporal Data
分析高通量数据和时空数据的预测方法
- 批准号:
RGPIN-2019-07020 - 财政年份:2022
- 资助金额:
$ 15.73万 - 项目类别:
Discovery Grants Program - Individual
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2022
- 资助金额:
$ 15.73万 - 项目类别:
Discovery Grants Program - Individual
Predictive Methods for Analyzing High-throughput Data and Spatial-Temporal Data
分析高通量数据和时空数据的预测方法
- 批准号:
RGPIN-2019-07020 - 财政年份:2021
- 资助金额:
$ 15.73万 - 项目类别:
Discovery Grants Program - Individual
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2021
- 资助金额:
$ 15.73万 - 项目类别:
Discovery Grants Program - Individual
SCC-CIVIC-PG Track A: Overcoming Mobility Inequity With New Open-Access Tools for Analyzing Spatial Accessibility
SCC-CIVIC-PG 轨道 A:利用用于分析空间可达性的新开放访问工具克服流动性不平等
- 批准号:
2043539 - 财政年份:2021
- 资助金额:
$ 15.73万 - 项目类别:
Standard Grant
Predictive Methods for Analyzing High-throughput Data and Spatial-Temporal Data
分析高通量数据和时空数据的预测方法
- 批准号:
RGPIN-2019-07020 - 财政年份:2020
- 资助金额:
$ 15.73万 - 项目类别:
Discovery Grants Program - Individual
IMAT-ITCR Collaboration: An integrated experimental and computational platform for analyzing the spatial organization of tumor clones
IMAT-ITCR 协作:用于分析肿瘤克隆空间组织的集成实验和计算平台
- 批准号:
10677381 - 财政年份:2020
- 资助金额:
$ 15.73万 - 项目类别:
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2020
- 资助金额:
$ 15.73万 - 项目类别:
Discovery Grants Program - Individual
Framework for analyzing spatial and spatiotemporal distributions of points
分析点的空间和时空分布的框架
- 批准号:
19H02375 - 财政年份:2019
- 资助金额:
$ 15.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)