A Noninformative Bayesian Approach to some Finite Population Problems when Auxiliary Variables are Present
存在辅助变量时一些有限总体问题的非信息贝叶斯方法
基本信息
- 批准号:9971331
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971331In finite population sampling in addition to the characteristic of interest, there are often auxiliary variables present which contain information about the characteristic. For example, a priori the population means or some of the population quantiles for these auxiliary variables could be known. Classical theory has developed a variety of methods to exploit this information with different levels of overall effectiveness. The Polya posterior was developed as a noninformative Bayesian approach to finite population sampling when little or no prior information is available. The goal of the proposed research is to extend the Polya posterior to problems where auxiliary variables are present. This will be done by restricting the Polya posterior in a natural way so that given a sample simulated copies of the entire population can be generated which satisfy the constraints induced by the prior knowledge about the auxiliary variables. Statistical inference can then be carried out using the simulated populations in the usual Bayesian manner. The two main technical problems will be to develop the underlying theory and the techniques for implementing the simulations which are consistent with the prior information at hand. This allows for a coherent approach to problems which standard theory must now consider individually. Several problems will be identified were certain types of prior information which are often presently ignored can be used in an objective and effective way. The resulting noninformative Bayesian procedures should have good frequentist properties.A fundamental problem of statistics is making inferences about a population when information is available only about a sample or subset of the individuals making up the population. For example, we may want to estimate how many days a typical worker is absent because of illness during a year in a given industry. In addition to the information in the sample, we may also know the average age or median education level for all the workers in the industry. Statisticians have developed various methods to handle such problems depending on what kind of information beyond the sample is at hand. Some methods work much better than others. In this research we will study a general approach which can effectively make use of a variety of types of information. This is done by using the data in the sample and the prior information to construct simulated or random copies of the entire population which are consistent with both the sample data and the prior information. By considering the variability among these randomly generated copies of the population one can find not only an estimate of the quantity of interest but a measure of uncertainty associated with the estimate.
在有限总体抽样中,除了感兴趣的特征外,通常还存在包含有关该特征的信息的辅助变量。例如,这些辅助变量的总体平均值或某些总体分位数的先验可以是已知的。经典理论已经发展出各种方法来开发这些信息,并具有不同程度的整体有效性。Polya后验是在先验信息很少或没有先验信息的情况下发展起来的有限总体抽样的无信息贝叶斯方法。建议研究的目标是将Polya后验扩展到存在辅助变量的问题。这将通过以自然的方式限制Polya后验来实现,以便在给定样本的情况下,可以生成满足关于辅助变量的先验知识所引起的约束的整个总体的模拟副本。然后,可以使用模拟的总体以通常的贝叶斯方式进行统计推断。两个主要的技术问题将是开发与手头上的先验信息一致的基本理论和实施模拟的技术。这为标准理论现在必须单独考虑的问题提供了一种连贯的方法。如果目前经常被忽视的某些类型的先验信息能够以客观和有效的方式加以利用,将会发现若干问题。由此产生的非信息性贝叶斯过程应该具有良好的频率特性。统计学的一个基本问题是,当信息仅关于组成总体的个体的样本或子集时,对总体进行推断。例如,我们可能想要估计在给定行业中,一个典型的工人在一年中因病缺勤的天数。除了样本中的信息外,我们还可以知道该行业所有工人的平均年龄或中位数教育水平。统计学家已经开发出各种方法来处理这些问题,这取决于手头有什么样本以外的信息。有些方法的效果比其他方法好得多。在这项研究中,我们将研究一种能够有效利用各种类型信息的通用方法。这是通过使用样本中的数据和先验信息来构建与样本数据和先验信息两者一致的整个总体的模拟或随机拷贝来实现的。通过考虑这些随机生成的种群副本的可变性,人们不仅可以找到感兴趣的数量的估计,而且可以找到与估计相关的不确定性的度量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glen Meeden其他文献
On Being Bayes and Unbiasedness
- DOI:
10.1007/s13171-017-0097-3 - 发表时间:
2017-05-18 - 期刊:
- 影响因子:0.500
- 作者:
Siamak Noorbaloochi;Glen Meeden - 通讯作者:
Glen Meeden
A minimal complete class theorem for decision problems where the parameter space contains only finitely many points
- DOI:
10.1007/bf01895320 - 发表时间:
1994-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Seung-Chun Li;Glen Meeden - 通讯作者:
Glen Meeden
Ordered designs and Bayesian inference in survey sampling
- DOI:
10.1007/s13171-010-0003-8 - 发表时间:
2010-06-17 - 期刊:
- 影响因子:0.500
- 作者:
Glen Meeden;Siamak Noorbaloochi - 通讯作者:
Siamak Noorbaloochi
Glen Meeden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glen Meeden', 18)}}的其他基金
A Synthesis of Objective Bayesian and Designed Based Methods for Finite Population Sampling
客观贝叶斯综合和有限总体抽样设计方法
- 批准号:
0406169 - 财政年份:2004
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Bayesian Problems in Sample Survey
数学科学:抽样调查中的一些贝叶斯问题
- 批准号:
9401191 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Some Bayesian Methods for Sequences of Discrete Observationsand for Finite Population Sampling
用于离散观测序列和有限总体抽样的一些贝叶斯方法
- 批准号:
9201718 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Application of the Stepwise BayesTechnique to Some Statistical Questions
数学科学:逐步贝叶斯技术在一些统计问题中的应用
- 批准号:
8902580 - 财政年份:1989
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Incorporating Prior Information in a Pseudo Bayesian Way for Some Problems with a Large ParameterSpace
数学科学:以伪贝叶斯方式结合先验信息解决一些具有大参数空间的问题
- 批准号:
8401740 - 财政年份:1984
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Admissibility in Multiparameter Estimation and in Finite Population Sampling (Mathematical Sciences)
多参数估计和有限总体抽样中的可接受性(数学科学)
- 批准号:
8202116 - 财政年份:1982
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2318758 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X027872/1 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach (PINCODE)
池化推理和精确组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X028100/1 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2348046 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach PINCODE
池化推理和精确组合分布:贝叶斯方法 PINCODE
- 批准号:
EP/X028712/1 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
- 批准号:
10718215 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X028119/1 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Joint modeling of multiple outcomes over space and time (JMMOST): A Bayesian approach
空间和时间上多种结果的联合建模 (JMMOST):贝叶斯方法
- 批准号:
RGPIN-2022-03740 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
A Bayesian Approach to Distributed Estimation for Multi-Object Systems
多目标系统分布式估计的贝叶斯方法
- 批准号:
FT210100506 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
ARC Future Fellowships
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual