Joint modeling of multiple outcomes over space and time (JMMOST): A Bayesian approach
空间和时间上多种结果的联合建模 (JMMOST):贝叶斯方法
基本信息
- 批准号:RGPIN-2022-03740
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Big Data market is currently valued at 140 billion USD and, by 2025, is expected to hold about 175 Zettabytes (1 ZB = 1e12 GB) of data that will require regular processing and analysis for information extraction. The proposed research addresses this emerging challenge of analyzing big data, more specifically rich data, which are cleaned, processed, and refined forms of raw-big data. It focuses on developing novel multivariate analytical methods that can analyze the precise location and time information in rich data, providing knowledge about events that are or will be happening around us at any point in time. For example, analyzing rich crime data at space-time (ST) dimensions can help detect the hourly, daily, or weekly progression of different crime types in neighborhoods. Thus, allowing targeted crime monitoring and the best use of our finite resources. The project will innovate the joint modeling of multiple outcomes over space and time (JMMOST) to analyze multiple complex outcomes (or events) from rich ST data using a single model for generating new information hidden in rich data. However, integrating space and time dimensions of data in a single model can be highly challenging due to their contrasting nature, which is further complicated by the large volume of rich ST data. These analytical constraints will be addressed through the application of Bayesian spatiotemporal modeling at a small-area level (e.g., neighborhoods). The selection of the Bayesian framework is based on past research evidence that Bayesian techniques supersede conventional approaches in analyzing space and time data. The project has short-term goals that will help us achieve our long-term goals in perfecting JMMOST for rich data analysis and establishing a Rich Data Spatial Analysis Research Centre in Canada that supports Bayesian spatial and ST analysis. The short-term goals aim to develop novel JMMOST methods for analyzing rich data at a fine--scale of space (e.g., customized grids) and time (e.g., hours), which can better capture the ST variabilities in rich data. The long-term goals aim to perfect the novel methods in terms of robustness and flexibility and thus, allow real-time analysis of rich data with spatial and temporal components for surveillance systems. This is important because, without the availability of reliable methodologies for analyzing rich data, the progress in natural science and engineering (NSE) research in Canada could stall due to the failure to exploit the ever-growing rich ST data sources. The project will globally benefit NSE fields like geographic information science and other fields like criminology and economics, enabling them to analyze their rich data to obtain new information. Through my current NSERC grant, I have established a research team to complete the proposed research. Upon renewal of the grant, more HQPs will be trained to develop and apply JMMOST methods in different fields using Canadian rich data.
大数据市场目前价值1400亿美元,到2025年,预计将拥有约175 ZB(1 ZB = 1 e12 GB)的数据,这些数据需要定期处理和分析以进行信息提取。拟议的研究解决了分析大数据的这一新兴挑战,更具体地说,丰富的数据,这些数据是原始大数据的清洁,处理和精炼形式。它专注于开发新的多变量分析方法,可以分析丰富数据中的精确位置和时间信息,提供有关我们周围任何时间点正在或将要发生的事件的知识。例如,在空间-时间(ST)维度上分析丰富的犯罪数据可以帮助检测社区中不同犯罪类型的每小时、每天或每周进展。因此,可以有针对性地监测犯罪,并最佳利用我们有限的资源。 该项目将创新时空多结果联合建模(JMMOST),使用单一模型从丰富的ST数据中分析多个复杂的结果(或事件),以生成隐藏在丰富数据中的新信息。然而,在单个模型中集成数据的空间和时间维度可能具有很大的挑战性,因为它们的对比性质,这是由大量丰富的ST数据进一步复杂化。这些分析限制将通过在小区域水平上应用贝叶斯时空建模来解决(例如,邻里)。贝叶斯框架的选择是基于过去的研究证据,贝叶斯技术取代传统的方法在分析空间和时间数据。 该项目的短期目标将帮助我们实现长期目标,完善JMMOST的丰富数据分析,并在加拿大建立一个支持贝叶斯空间和ST分析的丰富数据空间分析研究中心。短期目标旨在开发新的JMMOST方法,用于在精细的空间尺度上分析丰富的数据(例如,定制网格)和时间(例如,小时),这可以更好地捕捉ST变异丰富的数据。长期目标旨在完善新方法的鲁棒性和灵活性,从而允许实时分析监控系统的空间和时间组件的丰富数据。这一点很重要,因为如果没有可靠的方法来分析丰富的数据,加拿大自然科学和工程(NSE)研究的进展可能会由于未能利用日益丰富的ST数据源而停滞不前。该项目将在全球范围内使地理信息科学等NSE领域以及犯罪学和经济学等其他领域受益,使他们能够分析丰富的数据以获得新的信息。 通过我目前的NSERC拨款,我已经建立了一个研究团队来完成拟议的研究。在赠款续签后,将培训更多的HQP,利用加拿大丰富的数据在不同领域开发和应用JMMOST方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Law, Jane其他文献
Geographic Clustering of Admissions to Inpatient Psychiatry among Adults with Cognitive Disorders in Ontario, Canada: Does Distance to Hospital Matter?
- DOI:
10.1177/0706743717745870 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:4
- 作者:
Perlman, Christopher M.;Law, Jane;Stolee, Paul - 通讯作者:
Stolee, Paul
Social support availability is positively associated with memory in persons aged 45-85 years: A cross-sectional analysis of the Canadian Longitudinal Study on Aging
- DOI:
10.1016/j.archger.2019.103962 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:4
- 作者:
Oremus, Mark;Tyas, Suzanne L.;Law, Jane - 通讯作者:
Law, Jane
Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level
- DOI:
10.1007/s10940-013-9194-1 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:3.6
- 作者:
Law, Jane;Quick, Matthew;Chan, Ping - 通讯作者:
Chan, Ping
Bayesian spatial methods for small-area injury analysis: a study of geographical variation of falls in older people in the Wellington-Dufferin-Guelph health region of Ontario, Canada
- DOI:
10.1136/injuryprev-2011-040068 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:3.7
- 作者:
Chan, Wing C.;Law, Jane;Seliske, Patrick - 通讯作者:
Seliske, Patrick
Age- and Sex-Specific Association Between Vegetation Cover and Mental Health Disorders: Bayesian Spatial Study.
植被覆盖与心理健康障碍之间的年龄和性别特定关联:贝叶斯空间研究。
- DOI:
10.2196/34782 - 发表时间:
2022-07-28 - 期刊:
- 影响因子:8.5
- 作者:
Abdullah, Abu Yousuf Md;Law, Jane;Perlman, Christopher M.;Butt, Zahid A. - 通讯作者:
Butt, Zahid A.
Law, Jane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Law, Jane', 18)}}的其他基金
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
- 批准号:
371625-2009 - 财政年份:2013
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
- 批准号:
371625-2009 - 财政年份:2012
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
- 批准号:
371625-2009 - 财政年份:2011
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
- 批准号:
371625-2009 - 财政年份:2010
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Is the gut important in multiple joint osteoarthritis? A multimodal investigation in humans and pet dogs
肠道在多关节骨关节炎中重要吗?
- 批准号:
10859955 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Is the gut important in multiple joint osteoarthritis? A multimodal investigation in humans and pet dogs
肠道在多关节骨关节炎中重要吗?
- 批准号:
10677612 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Joint Modeling of Multiple Data Sources
多数据源联合建模
- 批准号:
RGPIN-2019-04404 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Joint differentiation-state plasticity and genetic diversity modeling to predict response and improve efficacy of drug combination therapy
联合分化状态可塑性和遗传多样性模型可预测反应并提高药物联合治疗的疗效
- 批准号:
10620102 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Is the gut important in multiple joint osteoarthritis? A multimodal investigation in humans and pet dogs
肠道在多关节骨关节炎中重要吗?
- 批准号:
10419121 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
- 批准号:
10299359 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Joint Modeling of Multiple Data Sources
多数据源联合建模
- 批准号:
RGPIN-2019-04404 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Studies on gut microbiome-joint connections in arthritis
关节炎肠道微生物组与关节连接的研究
- 批准号:
10645002 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
- 批准号:
10456319 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别: