Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
基本信息
- 批准号:9971405
- 负责人:
- 金额:$ 49.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971405During the 1980's, researchers who were trying to model learning in the brain developed several novel learning algorithms for multilayer non-linear neural networks. Somewhat incidentally, these algorithms turn out to be very powerful techniques for adaptive regression and classification, and have proven their usefulness independent of whether or not they are a good model for the brain. They are now being applied to medical diagnosis, chemical process control, shape recognition and a wide range of other important practical problems. At the same time, there have been significant advances in adaptive techniques in the field of statistics. The new statistical methods are more powerful than classical techniques such as linear regression and linear discriminant analysis. Some of the recently developed procedures include CART (Classification And Regression Trees), generalized additive models, MARS (Multivariate Additive Regression Splines), and sophisticated versions of nearest neighbor algorithms that learn an appropriate metric for the input space. Although they come from different fields using different terminologies, these methods have much in common. One item in this proposal is a research monograph that seeks to bring many of these ideas under one umbrella, explaining them in a unified fashion. Two other items explore some recent new methods for improving classifiers and for adaptive model selection.This work aims at developing new models and methods for making predictions based on historical data. These techniques are important in many different fields including medical diagnosis, financial forecasting and industrial process control. The area of biotechnology is an especially important application for these methods. Scientists now have techniques for measuring gene expression levels for thousands of genes at the same time, allowing the exciting possibility of determining which human genes are involved in a diseases such as cancer and heart disease. Sorting through the mass of information is like trying to find a needle in a haystack, and predictive methods like the ones studied here will provide an important tool in this search.
在20世纪80年代的S期间,试图建立大脑学习模型的研究人员为多层非线性神经网络开发了几种新的学习算法。顺便说一句,这些算法被证明是非常强大的自适应回归和分类技术,并证明了它们的有用性,无论它们是否是大脑的好模型。它们现在被应用于医疗诊断、化工过程控制、形状识别和其他一系列重要的实际问题。与此同时,在统计领域的适应技术方面也取得了重大进展。新的统计方法比线性回归和线性判别分析等经典方法更强大。最近开发的一些过程包括CART(分类和回归树)、广义加法模型、MARS(多元加性回归样条法)和复杂版本的最近邻算法,这些算法为输入空间学习适当的度量。尽管它们来自不同的领域,使用不同的术语,但这些方法有许多共同之处。这项提案中的一项是一本研究专著,试图将这些想法集中在一个保护伞下,以统一的方式解释它们。另外两个项目探索了一些最近改进分类器和自适应模型选择的新方法。这项工作旨在开发基于历史数据进行预测的新模型和方法。这些技术在许多不同的领域都很重要,包括医疗诊断、金融预测和工业过程控制。生物技术领域是这些方法的一个特别重要的应用。科学家们现在有了同时测量数千个基因的基因表达水平的技术,这使得确定哪些人类基因与癌症和心脏病等疾病有关成为可能。在海量信息中进行分类就像大海捞针,像这里研究的预测方法将在这次搜索中提供重要的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Tibshirani其他文献
Quantitative characterization of tissue states using multiomics and ecological spatial analysis
使用多组学和生态空间分析对组织状态进行定量表征
- DOI:
10.1038/s41588-025-02119-z - 发表时间:
2025-04-01 - 期刊:
- 影响因子:29.000
- 作者:
Daisy Yi Ding;Zeyu Tang;Bokai Zhu;Hongyu Ren;Alex K. Shalek;Robert Tibshirani;Garry P. Nolan - 通讯作者:
Garry P. Nolan
Evaluating a shrinkage estimator for the treatment effect in clinical trials
评估临床试验中治疗效果的收缩估计器
- DOI:
10.1002/sim.9992 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
E. V. van Zwet;Lu Tian;Robert Tibshirani - 通讯作者:
Robert Tibshirani
Warm induction blood cardioplegia in the infant. A technique to avoid rapid cooling myocardial contracture.
婴儿温诱导血停跳液。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:6
- 作者:
W. G. Williams;I. Rebeyka;Robert Tibshirani;John G. Coles;Nancy E. Lightfoot;Arun Mehra;R. Freedom;G. Trusler - 通讯作者:
G. Trusler
Basophil activation tests identify a peanut OIT subgroup with improved safety and outcomes
- DOI:
10.1016/j.jaci.2020.12.589 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Sharon Chinthrajah;Shu Cao;Mindy Tsai;Kaori Mukai;Robert Tibshirani;Sayantani Sindher;Kari Nadeau;Stephen Galli - 通讯作者:
Stephen Galli
Predicting the need for hospitalization in children with acute asthma.
预测患有急性哮喘的儿童住院的需要。
- DOI:
10.1378/chest.98.6.1355 - 发表时间:
1990 - 期刊:
- 影响因子:9.6
- 作者:
Eitan Kerem;Robert Tibshirani;G. Canny;Lea Bentur;Joe Reisman;Susanna Schuh;Renato Stein;Henry Levison - 通讯作者:
Henry Levison
Robert Tibshirani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Tibshirani', 18)}}的其他基金
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
1208164 - 财政年份:2012
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
0705007 - 财政年份:2007
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
0404594 - 财政年份:2004
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Travel: New Statistical Physics of Living Matter: non-equilibrium states under adaptive control
旅行:生命物质的新统计物理学:自适应控制下的非平衡态
- 批准号:
2326439 - 财政年份:2023
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Adaptive and Robust Methods in Statistical Machine Learning
统计机器学习中的自适应和鲁棒方法
- 批准号:
2748915 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Studentship
Adaptive Design for Fast Machine/Statistical Learning
快速机器/统计学习的自适应设计
- 批准号:
RGPIN-2019-05019 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
- 批准号:
RGPIN-2016-05221 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Adaptive Trial Designs for Cardiovascular Outcomes with Information Sharing
具有信息共享的心血管结果的统计方法和适应性试验设计
- 批准号:
10378560 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Statistical Methods and Adaptive Trial Designs for Cardiovascular Outcomes with Information Sharing
具有信息共享的心血管结果的统计方法和适应性试验设计
- 批准号:
10594472 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
- 批准号:
RGPIN-2016-05221 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Design for Fast Machine/Statistical Learning
快速机器/统计学习的自适应设计
- 批准号:
RGPIN-2019-05019 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric Adaptive Designs and Statistical Inference for Both the Mean and the Quantiles
均值和分位数的半参数自适应设计和统计推断
- 批准号:
2014951 - 财政年份:2020
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant