Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency

临床试验自适应设计的统计建模:最优性和效率

基本信息

  • 批准号:
    RGPIN-2016-05221
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Response adaptive design (RAD) has ethical advantages over traditional methods for clinical trials, but it also introduces dependency into data. Most statistical literature on RAD focused on statistical methodologies for mean response models without considering population heterogeneity. Ignoring such heterogeneity could introduce bias into conclusions. In addition, patients exposed to different environmental factors may respond to treatments very differently. All these are the main reasons why the efficacious treatments recommended by randomized clinical trials do not always work in day-to-day health care.This proposed research will develop new RAD to advocate the ethical advantages of RAD, propose statistical methods to account for the dependency introduced by RAD for various population heterogeneities, and establish efficient inferential methods for the proposed designs. This research will investigate the influence of adaptive randomization on statistical estimation, and employ that influence to improve the efficiency in learning on treatment effect. The population heterogeneities considered in this research include patients' and institutional characteristics and their interactions with treatments as well as patients' responses to a series of treatments.This research will establish statistical methods for RAD with covariates and interaction, especially qualitative interaction, as well as for RAD for dynamic treatment region clinical trials. The results will add to the statistical literature on estimation for dependent data under adaptive randomization as well as optimal designs of clinical trials for heterogeneous populations. The use of RAD to adaptively learn on qualitative interaction may improve the efficiency of detecting subpopulations. Statistical methods developed for clustered responses will add efficient ethical designs for multi-center trials. The integration of adaptive randomization into clinical trials of dynamic treatment region (DTR) will enable adaptive learning on the optimal DTR thus improving the ethical benefit and statistical efficiency.This proposed research addresses the methodological challenges in design and analysis of clinical trials when facing population heterogeneities. The developed methodologies incorporate population heterogeneities in RAD learning to advocate the ethical benefits and to improve statistical power. This research will add innovative designs of clinical trials and efficient statistical methods to statistical literature. The resulting toolbox can be generalized to other clinical settings where practitioners hope to efficiently identify optimal treatments for subpopulations.
与传统的临床试验方法相比,响应自适应设计(RAD)具有伦理优势,但它也将相关性引入到数据中。大多数关于RAD的统计文献都集中在均值反应模型的统计方法上,而没有考虑群体的异质性。忽视这种异质性可能会在结论中引入偏见。此外,暴露在不同环境因素下的患者对治疗的反应可能会非常不同。所有这些都是随机临床试验推荐的有效治疗方法在日常保健中并不总是有效的主要原因。本研究将开发新的RAD来宣传RAD的伦理优势,提出统计方法来解释RAD对各种人群异质性的依赖,并为所建议的设计建立有效的推断方法。本研究将探讨自适应随机化对统计估计的影响,并利用这种影响来提高学习效率对治疗效果的影响。研究中考虑的群体异质性包括患者和机构的特征及其与治疗的交互作用,以及患者对一系列治疗的反应。本研究将建立具有协变量和交互作用的RAD的统计方法,特别是定性交互作用,以及动态治疗区域临床试验的RAD。这一结果将增加关于自适应随机化下的相依数据估计以及针对不同人群的临床试验的最佳设计的统计文献。使用RAD自适应地学习定性交互作用可能会提高检测子种群的效率。为分组反应开发的统计方法将为多中心试验增加有效的伦理设计。将自适应随机化方法引入动态治疗区域(DTR)的临床试验中,可以在最优DTR上实现自适应学习,从而提高伦理效益和统计效率。所开发的方法将人口异质性纳入RAD学习,以倡导伦理利益并提高统计能力。这项研究将为统计文献增加临床试验的创新设计和有效的统计方法。所得到的工具箱可以推广到其他临床环境,在这些环境中,从业者希望有效地确定针对亚群的最佳治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi, Yanqing其他文献

Dental health status, dentist visiting, and dental insurance of Asian immigrants in Canada.
  • DOI:
    10.1186/s12939-023-01863-0
  • 发表时间:
    2023-04-25
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Li, Qianqian;Wang, Yu;Knight, John C.;Yi, Yanqing;Ozbek, Sara;Shariati, Matin;Wang, Peizhong Peter;Zhu, Yun
  • 通讯作者:
    Zhu, Yun
Study protocol for CELLAR (COVID-related Eating Limitations and Latent dietary effects in the Atlantic Region): population-based observational study to monitor dietary intakes and purchasing during COVID-19 in four Atlantic Canadian provinces.
  • DOI:
    10.1136/bmjopen-2022-061660
  • 发表时间:
    2022-04-27
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mah, Catherine L.;Foster, Karen;Jago, Emily;Hajizadeh, Mohammad;Luongo, Gabriella;Taylor, Nathan;Fuller, Daniel;Yi, Yanqing;Esan, Olukorede T.;Lukic, Ryan;Clarke, Maria;Wranik, Wieslawa Dominika;Brimblecombe, Julie Kay;Peeters, Anna
  • 通讯作者:
    Peeters, Anna
Exploring factors influencing construction waste reduction: A structural equation modeling approach
  • DOI:
    10.1016/j.jclepro.2020.123185
  • 发表时间:
    2020-12-10
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Liu, Jingkuang;Yi, Yanqing;Wang, Xuetong
  • 通讯作者:
    Wang, Xuetong
Community-Acquired Pneumonia in Patients With Diabetes Mellitus: Predictors of Complications and Length of Hospital Stay
  • DOI:
    10.1016/j.amjms.2016.02.032
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Bader, Mazen S.;Yi, Yanqing;Hawboldt, John
  • 通讯作者:
    Hawboldt, John
Dental Insurance Coverage, Dentist Visiting, and Oral Health Status among Asian Immigrant Women of Childbearing Age in Canada: A Comparative Study.
加拿大育龄亚洲移民妇女的牙科保险覆盖范围、牙医就诊和口腔健康状况:一项比较研究。
  • DOI:
    10.3390/healthcare11192666
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Li, Qianqian;Du, Meizhi;Knight, John C.;Yi, Yanqing;Wang, Qi;Wang, Peizhong Peter;Zhu, Yun
  • 通讯作者:
    Zhu, Yun

Yi, Yanqing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi, Yanqing', 18)}}的其他基金

Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
  • 批准号:
    RGPIN-2016-05221
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
  • 批准号:
    RGPIN-2016-05221
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
  • 批准号:
    RGPIN-2016-05221
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
  • 批准号:
    RGPIN-2016-05221
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for the adaptive design and analysis of clinical trials
临床试验适应性设计和分析的统计方法
  • 批准号:
    371501-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for the adaptive design and analysis of clinical trials
临床试验适应性设计和分析的统计方法
  • 批准号:
    371501-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for the adaptive design and analysis of clinical trials
临床试验适应性设计和分析的统计方法
  • 批准号:
    371501-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for the adaptive design and analysis of clinical trials
临床试验适应性设计和分析的统计方法
  • 批准号:
    371501-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for the adaptive design and analysis of clinical trials
临床试验适应性设计和分析的统计方法
  • 批准号:
    371501-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
  • 批准号:
    DP240101743
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Next generation high throughput lipidomics using adaptive modelling
使用自适应建模的下一代高通量脂质组学
  • 批准号:
    DP230101795
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Experimentation and Modelling of Novel Adaptive Shaft Seals for use in Turbomachinery
涡轮机械用新型自适应轴密封件的实验和建模
  • 批准号:
    2889798
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
  • 批准号:
    2746484
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
  • 批准号:
    EP/W023202/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
An adaptive individualization of Hierarchical sleep modelling using Bayesian deep learning
使用贝叶斯深度学习的分层睡眠模型的自适应个体化
  • 批准号:
    22K12276
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
  • 批准号:
    RGPIN-2016-05221
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Self-adaptive modelling of large-scale process systems using machine learning
使用机器学习对大型过程系统进行自适应建模
  • 批准号:
    2618330
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Adaptive turbulence modelling to improve high-impact weather forecasts in next generation atmospheric models
自适应湍流建模可改善下一代大气模型中的高影响天气预报
  • 批准号:
    NE/T011351/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Fellowship
Pharmacokinetic modelling and adaptive design for regional tissue flow and extraction for preclinical PET/CT
临床前 PET/CT 局部组织流动和提取的药代动力学建模和自适应设计
  • 批准号:
    2463148
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了