3-Manifolds and Geometric Group Theory

3-流形和几何群论

基本信息

项目摘要

Proposal: DMS-9971555PI: Peter ScottAbstract: The proposer plans to investigate purely algebraic analogs of the theoryof the characteristic submanifold of a Haken 3-manifold. Some results inthis direction have already been obtained by several authors but theiruniqueness results are much weaker than that in the 3-manifold context. Itis expected that such results should also yield new understanding of thepurely topological theory of 3-manifolds. The universe appears to be 3-dimensional and it is a very interestingquestion to understand its shape. There is an abstract theory of spacescalled 3-manifolds which attempts to describe all the possibilities forthe shape of such a space. While this theory is not complete, there is agreat deal known. In particular, many (and perhaps all) such spaces can bedecomposed into simple geometric pieces in a natural way. In thisproposal, it is planned to investigate further the properties of thisdecomposition into geometric pieces.
提案:DMS-9971555 PI:Peter Scott摘要:提出者计划研究Haken 3-流形的特征子流形理论的纯代数类似物。这方面的一些结果已经被一些作者得到,但他们的唯一性结果比在三维流形上的结果弱得多。期望这些结果也能对三维流形的纯拓扑理论产生新的认识。 宇宙看起来是三维的,理解它的形状是一个非常有趣的问题。有一种抽象的空间理论叫做三维流形,它试图描述这种空间形状的所有可能性。虽然这个理论还不完整,但有一个很大的交易。特别是,许多(也许是所有)这样的空间可以被分解成简单的几何件在一个自然的方式。在这个建议中,计划进一步研究这种分解成几何块的性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

G. Peter Scott其他文献

G. Peter Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('G. Peter Scott', 18)}}的其他基金

Geometric Group Theory and the Topology of 3-Manifolds
几何群论和3-流形拓扑
  • 批准号:
    0203883
  • 财政年份:
    2002
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Some Problems in 3-Dimensional Topology and in Related Algebra
数学科学:三维拓扑及相关代数中的一些问题
  • 批准号:
    9626537
  • 财政年份:
    1996
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Geometric and computational group theory, in and around three-manifolds
三流形及其周围的几何和计算群论
  • 批准号:
    1462263
  • 财政年份:
    2014
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Standard Grant
Geometric Group Theory with an Emphasis on Cube Complexes and Three-Manifolds
强调立方复形和三流形的几何群论
  • 批准号:
    464041-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometric and computational group theory, in and around three-manifolds
三流形及其周围的几何和计算群论
  • 批准号:
    1405596
  • 财政年份:
    2014
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Standard Grant
Geometric structure on geometric manifolds which admit Lie group transformations and various Rigidity
几何流形上的几何结构,允许李群变换和各种刚性
  • 批准号:
    20340013
  • 财政年份:
    2008
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Invariants On the Geometric Manifolds with Group Actions
具有群作用的几何流形上的不变量
  • 批准号:
    14340026
  • 财政年份:
    2002
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric Group Theory and the Topology of 3-Manifolds
几何群论和3-流形拓扑
  • 批准号:
    0203883
  • 财政年份:
    2002
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant
Geometric Group Theory and the Topology of Aspherical Manifolds
几何群论与非球面流形拓扑
  • 批准号:
    0104026
  • 财政年份:
    2001
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant
Geometric Group Theory and 3-Manifolds
几何群论和三流形
  • 批准号:
    9803316
  • 财政年份:
    1998
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Group Theory and 3-Manifolds
数学科学:几何群论和3-流形
  • 批准号:
    9503034
  • 财政年份:
    1995
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Group Theory and 3-Manifolds
数学科学:几何群论和3-流形
  • 批准号:
    9203941
  • 财政年份:
    1992
  • 资助金额:
    $ 8.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了