Estimating Parameters in Spike-convolution Models and Mixture Models

估计尖峰卷积模型和混合模型中的参数

基本信息

  • 批准号:
    9971698
  • 负责人:
  • 金额:
    $ 7.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-15 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

9971698This research links the parametric deconvolution problem in the spike-convolution model with the estimation problem in finite mixture models. It aims to weave together good results on algorithms and asymptotics from both sides, and develop new methodologies, which are implementable in computation and efficient in theory. The first object of this research, the spike-convolution model, is introduced as part of the models proposed for DNA sequencing by the PI and his collaborators. The current sequencing scheme named after Sanger combines three techniques: enzymatic reactions, gel or capillary electrophoresis and fluorescence-based detection. This biochemical procedure produces a four-component vector time series for each DNA fragment. The task of DNA base-calling is to recover the underlying DNA sequence from the above time series. Most of the base-calling errors are caused by the diffusion effect of electrophoresis. It is found that this diffusion effect can be well described by the so-called spike-convolution model. It arises when a sparse Dirac spike train is convolved with a fixed point spread function, and additive noise or measurement error is superimposed. In this model, deconvolution is nothing but a standard parameter estimation problem, where the parameters include the number, locations and heights of the underlying spikes, the baseline and the measurement error variance. The second object of this research, the finite mixture model, is the framework of many statistical analyses like robustness checking, clustering, estimating density functions, etc. However, the estimation of the parameters in mixture models can be very troublesome, especially when many components are involved. It is believed that a broad class of finite mixture models is closely related to the spike-convolution model. No simple solution exists to the estimation problems in these two models because of the complexity. This research proposes to combine the method of trigonometric moments with a two-stage model selection procedure, Gauss-Newton algorithm, or EM algorithm depending on the situations. The numerical and statistical aspects of the new methods and their variants are examined and compared with those of existing methods. The Toeplitz forms constructed from trigonometric moments and their statistical properties play a key role in the proposed methods, and are investigated in full detail.This research studies the newly proposed spike-convolution model and the long-standing finite mixture models from a unified perspective. The former is motivated by the large scale and high throughput DNA sequencing, which is one of the most important aspects of the ongoing Human Genome Project and other genome projects. The lack of satisfactory deconvolution techniques and statistical models has made DNA base-calling---the data analysis part of sequencing---a bottle neck of these projects. An effective deconvolution technique, a target of this research, is a fundamental prerequisite for rapid and reliable DNA base-calling. In fact, similar deconvolution problems arise in many other scientific disciplines like geophysics, spectroscopy, and chromatography. The research results are also expected to enrich the understanding and methodologies of finite mixture models, which have applications to a diversity of fields such as physics, medicine, and biology.
9971698本研究将尖峰卷积模型中的参数反卷积问题与有限混合模型中的估计问题联系起来。 它的目的是将两者在算法和渐近性方面的好结果编织在一起,发展新的方法,这些方法在计算上是可实现的,在理论上是有效的。 本研究的第一个对象,尖峰卷积模型,介绍了PI和他的合作者提出的DNA测序模型的一部分。 目前以桑格命名的测序方案结合了三种技术:酶反应、凝胶或毛细管电泳和基于荧光的检测。 这个生化过程为每个DNA片段产生一个四组分向量时间序列。 DNA碱基调用的任务是从上述时间序列中恢复潜在的DNA序列。 大多数碱基识别错误是由电泳的扩散效应引起的。 研究发现,这种扩散效应可以很好地描述所谓的尖峰卷积模型。 当稀疏狄拉克尖峰序列与固定点扩展函数卷积时,会出现加性噪声或测量误差叠加。 在该模型中,反卷积只是一个标准的参数估计问题,其中参数包括潜在尖峰的数量、位置和高度、基线和测量误差方差。 本研究的第二个对象,有限混合模型,是许多统计分析的框架,如鲁棒性检查,聚类,估计密度函数等,然而,混合模型中的参数估计可能是非常麻烦的,特别是当涉及到许多组件。 据信,一类广泛的有限混合模型与尖峰卷积模型密切相关。 由于这两个模型的复杂性,没有简单的解决方案存在的估计问题。 本研究提出将联合收割机的三角矩方法与两阶段的模型选择过程,高斯-牛顿算法,或EM算法根据情况相结合。 的数值和统计方面的新方法和它们的变种进行检查,并与现有的方法进行比较。 由三角矩构造的Toeplitz形式及其统计性质在所提出的方法中起着关键作用,并进行了详细的研究。本研究从统一的角度研究了新提出的尖峰卷积模型和长期存在的有限混合模型。 大规模、高通量的DNA测序是人类基因组计划和其他基因组计划的重要内容之一。 由于缺乏令人满意的去卷积技术和统计模型,DNA碱基识别-测序的数据分析部分-成为这些项目的瓶颈。 一个有效的去卷积技术,这项研究的目标,是快速和可靠的DNA碱基调用的基本先决条件。 事实上,类似的反卷积问题出现在许多其他科学学科中,如天体物理学,光谱学和色谱学。 研究结果也有望丰富有限混合模型的理解和方法,该模型可应用于物理,医学和生物学等多种领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Li其他文献

Combined optical and mechanical scanning in optical-resolution photoacoustic microscopy
光学分辨率光声显微镜中的光学和机械扫描相结合
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Li;Chenghung Yeh;Song Hu;Lidai Wang;Brian T. Soetikno;Ruimin Chen;Qifa Zhou;K. Shung;K. Maslov;Lihong V. Wang
  • 通讯作者:
    Lihong V. Wang
Two-stage multi-task deep learning framework for simultaneous pelvic bone segmentation and landmark detection from CT images
用于同时进行骨盆骨分割和 CT 图像标志检测的两阶段多任务深度学习框架
  • DOI:
    10.1007/s11548-023-02976-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Haoyu Zhai;Zhonghua Chen;Lei Li;Hairong Tao;Jinwu Wang;Kang Li;Moyu Shao;Xiaomin Cheng;Jing Wang;Xiang Wu;Chuansong Wu;Xiao Zhang;Lauri Kettunen;Hongkai Wang
  • 通讯作者:
    Hongkai Wang
Electrode Engineering in MoS2 MOSFET: Different Semiconductor/Metal Interfaces
MoS2 MOSFET 的电极工程:不同的半导体/金属界面
  • DOI:
    10.1002/aelm.202200513
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yang Li;Xisai Zhang;Xinpei Duan;Wencheng Niu;Shengjie Zhao;Xiaobo He;Hao Huang;Xingqiang Liu;Xuming Zou;Lei Li;Fukai Shan;Zhenyu Yang
  • 通讯作者:
    Zhenyu Yang
A Fast Fixed Point Continuation Algorithm with Application to Compressed Sensing
一种应用于压缩感知的快速定点连续算法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qingqing Guo;Lei Li
  • 通讯作者:
    Lei Li
Prediction of fracture density using genetic algorithm support vector machine based on acoustic logging data
基于声波测井数据的遗传算法支持向量机预测裂缝密度
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Tianyang Li;Ruihe Wang;Zizhen Wang;Mingyuan Zhao;Lei Li
  • 通讯作者:
    Lei Li

Lei Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Li', 18)}}的其他基金

PFI-TT: Novel ionic liquid lubricant for next-generation information storage technology
PFI-TT:用于下一代信息存储技术的新型离子液体润滑剂
  • 批准号:
    2329767
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Conference: Funding Proposal for 2022 AAAI Doctoral Consortium
会议:2022年AAAI博士联盟资助提案
  • 批准号:
    2219627
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
FMSG: Shape-programmable elastic-plastic tubes as building blocks for origami
FMSG:形状可编程的弹塑管作为折纸的构建块
  • 批准号:
    2036164
  • 财政年份:
    2021
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Water wettability of floating graphene: Mechanism and Application
漂浮石墨烯的水润湿性:机理与应用
  • 批准号:
    2028826
  • 财政年份:
    2020
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Micromechanics of Meniscus-bound Particle Clusters
合作研究:弯月面束缚粒子簇的微观力学
  • 批准号:
    2031144
  • 财政年份:
    2020
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure and Thermodynamics of Ionic Liquids at Solid Surfaces: the Return of Water
合作研究:固体表面离子液体的结构和热力学:水的返回
  • 批准号:
    1904486
  • 财政年份:
    2019
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
CAREER: Mechanistic studies of the spore photoproduct lyase
职业:孢子光产物裂合酶的机理研究
  • 批准号:
    1454184
  • 财政年份:
    2015
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
A Multiphase Printing Process for Freeform Optics Manufacturing
自由曲面光学制造的多阶段打印工艺
  • 批准号:
    1538439
  • 财政年份:
    2015
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Understanding the Mechanism of Simultaneous Oleophobic/Hydrophilic Behavior: When a Nanometer-Thick Polymer Coating meets a Solid Surface
了解同时疏油/亲水行为的机制:当纳米厚的聚合物涂层遇到固体表面时
  • 批准号:
    1233161
  • 财政年份:
    2012
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Role of microRNA-related Polymorphisms in Regulating Heterotic Gene Expression
microRNA相关多态性在调节杂种基因表达中的作用
  • 批准号:
    0922526
  • 财政年份:
    2009
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant

相似国自然基金

3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Principled Framework for Explaining, Choosing and Negotiating Privacy Parameters of Differential Privacy
解释、选择和协商差异隐私的隐私参数的原则框架
  • 批准号:
    23K24851
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Determining the geomagnetic and heliophysical parameters that control increases and decreases in Earth's outer radiation belt
确定控制地球外辐射带增减的地磁和太阳物理参数
  • 批准号:
    2903408
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Studentship
Analysis and design of building frames using machine learning considering uncertainty of parameters
考虑参数不确定性的利用机器学习的建筑框架分析与设计
  • 批准号:
    23K04104
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverting turbulence: flow patterns and parameters from sparse data
反演湍流:来自稀疏数据的流动模式和参数
  • 批准号:
    EP/X017273/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Research Grant
SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
  • 批准号:
    2301397
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
ATD: Fast Bayesian Anomalies Detection in Dynamical System Time-varying Parameters
ATD:动态系统时变参数中的快速贝叶斯异常检测
  • 批准号:
    2318883
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Modelling of Resonant Acoustic Mixing Parameters
共振声混合参数的建模
  • 批准号:
    2889976
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Studentship
Research of effective electrical stimulation parameters for promoting blood flow to prevent thrombosis
有效促进血流预防血栓形成的电刺激参数研究
  • 批准号:
    23K11955
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bayesian estimation of soil layer parameters and immediate prediction of spatial distribution of hit probability in debris flow simulation
泥石流模拟中土层参数的贝叶斯估计及撞击概率空间分布的即时预测
  • 批准号:
    23K13412
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishment of a quantitative imaging method for evaluating the viscosity parameters in skeletal muscle using shear wave imaging.
建立利用剪切波成像评估骨骼肌粘度参数的定量成像方法。
  • 批准号:
    23K19913
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了