The Algebra of Spectra, Group Actions, and Classifying Spaces
谱代数、群作用和空间分类
基本信息
- 批准号:9971953
- 负责人:
- 金额:$ 34.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971953Wilkerson Wilkerson will continue his work with Dwyer on the extended Steenrodproblem of understanding spaces with properties at a prime similar tothose of the classifying spaces of connected compact Lie groups. He willalso work with Jeff Smith on homotopy automorphism groups of finitenilpotent complexes and actions of finite groups on such complexes. Inaddition, he will work with Jim Turner and Avramov on analogues of theSerre theorem that establishes that non-trivial simply connected finitecomplexes have nontrivial homotopy in an infinite number of dimensions.McClure will work with Jeff Smith on higher centers of associative ringspectra. He will also investigate a large class of spectral sequencesthat should admit chain-complex models that facilitate calculation. Astep in this project that should be interesting in its own right is toshow that certain homotopy categories of module spectra can be modeled bychain complexes. Shipley will develop a new model for equivariant stablehomotopy theory; this will provide algebraic models for rationalequivariant stable homotopy theory over compact Lie groups. She willalso study (with Dwyer) a cobar spectral sequence and its convergenceproperties. With Rezk and Schwede she will study a way to replacearbitrary model categories by simplicial model categories. Smith willcontinue his work on using the theory of model categories as a toolfor the study of ring spectra and of commutative ring spectra. Inparticular, he will study the homotopy theory of ring spectra over afixed ring R, the homotopy theory of coalgebras of R-bimodules, and thebar construction. He will improve his theory of combinatorial modelcategories to make it a more effective tool. In joint work with Adem hewill study the homotopy theory of group actions on homotopy products ofspheres. As can be seen from this summary, this project will involve researchin many different directions within homotopy theory. Several of theproblems to be investigated have been important for a long time (forexample, the Steenrod problem and the joint work of Smith and Adem goback to the 1960's), while others involve very recent developments(especially the theory of strictly associative and commutative ringspectra; Smith and Shipley were pioneers in this area, and McClure'swork makes heavy use of it). The joint work of McClure and Smith hasapplications to mathematical physics, since it is closely related torecent work of Kontsevich and Tamarkin on deformation quantization.***
小行星9971953 威尔克森将继续他的工作与德怀尔的扩展Steenrod问题的理解空间的性质在一个总理类似的分类空间的连接紧凑李群。 他还将与杰夫史密斯同伦自同构群的finitenilpotent复杂和行动的有限团体等复杂。 此外,他将与吉姆特纳和阿夫拉莫夫的类似物的塞尔定理,建立了非平凡的简单连接finitecomplex有非平凡的同伦在无限数量的层面。麦克卢尔将与杰夫史密斯在更高的中心的关联环谱。 他还将研究一大类光谱序列,这些序列应该允许链复合模型,以便于计算。 在这个项目的一个步骤,应该是有趣的,在其本身的权利是表明,某些同伦类别的模谱可以模拟链复合物。 希普利将开发一个新的模型等变稳定同伦理论,这将提供代数模型的rationalequivariant稳定同伦理论在紧凑的李群。 她还将研究(与德怀尔)cobar谱序列及其收敛性质。 与Rezk和Schwede,她将研究一种方法,通过单纯模型类别来描述earbitrary模型类别。 史密斯将继续他的工作,利用模型范畴理论作为研究环谱和交换环谱的工具。 特别是,他将研究同伦理论的环谱在一个固定的环R,同伦理论的余代数的R-双模,和thebar建设。 他将改进他的组合模型分类理论,使其成为更有效的工具。 在联合工作与阿德姆,他将研究同伦理论的群体行动的同伦产品的领域。 从这个总结中可以看出,这个项目将涉及同伦理论中许多不同方向的研究。 几个theprojects要调查一直是重要的很长一段时间(例如,Steenrod问题和联合工作的史密斯和Adem gobback到20世纪60年代),而其他人涉及最近的发展(特别是理论的严格结合和交换环谱;史密斯和希普利是先驱在这一领域,和麦克卢尔的工作使大量使用它)。 麦克卢尔和史密斯的联合工作可应用于数学物理,因为它与孔采维奇和塔马金最近关于变形量子化的工作密切相关。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clarence Wilkerson其他文献
The Elementary Geometric Structure of Compact Lie Groups
紧李群的基本几何结构
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
William G. Dwyer;Clarence Wilkerson - 通讯作者:
Clarence Wilkerson
Clarence Wilkerson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clarence Wilkerson', 18)}}的其他基金
Collaborative Research: FRG: Homotopical Approaches to Group Actions
合作研究:FRG:群体行动的同伦方法
- 批准号:
0354787 - 财政年份:2004
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Operads, Group Actions, and Classifying Spaces
操作、群动作和空间分类
- 批准号:
0206963 - 财政年份:2002
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9508223 - 财政年份:1995
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Lie Groups up to Homotopy
数学科学:李群到同伦
- 批准号:
9505006 - 财政年份:1995
- 资助金额:
$ 34.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Function Complexes And The Steenrod Algebra In Homotopy Theory
数学科学:同伦理论中的函数复形和斯廷罗德代数
- 批准号:
9207731 - 财政年份:1992
- 资助金额:
$ 34.3万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Equipment (SCREMS)
数学科学研究设备(SCREMS)
- 批准号:
8704548 - 财政年份:1987
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Methods in Homotopy Theory
数学科学:同伦理论中的代数方法
- 批准号:
8401991 - 财政年份:1984
- 资助金额:
$ 34.3万 - 项目类别:
Continuing Grant
The Algebraic Topology of Classifying Spaces (Mathematics)
分类空间的代数拓扑(数学)
- 批准号:
8202185 - 财政年份:1982
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Some Algebraic Methods in Unstable Homotopy Theory
不稳定同伦论中的一些代数方法
- 批准号:
7802284 - 财政年份:1978
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
相似国自然基金
利用AATSR和SPECTRA联合反演植被组分温度的方法研究
- 批准号:40471095
- 批准年份:2004
- 资助金额:37.0 万元
- 项目类别:面上项目
相似海外基金
The Effects of Chemical Variations on the Integrated Light Spectra of Local Group Globular Clusters
化学变异对本群球状星团积分光谱的影响
- 批准号:
405758-2011 - 财政年份:2013
- 资助金额:
$ 34.3万 - 项目类别:
Vanier Canada Graduate Scholarships - Doctoral
The Effects of Chemical Variations on the Integrated Light Spectra of Local Group Globular Clusters
化学变异对本群球状星团积分光谱的影响
- 批准号:
405758-2011 - 财政年份:2012
- 资助金额:
$ 34.3万 - 项目类别:
Vanier Canada Graduate Scholarships - Doctoral
The Effects of Chemical Variations on the Integrated Light Spectra of Local Group Globular Clusters
化学变异对本群球状星团积分光谱的影响
- 批准号:
405758-2011 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
Vanier Canada Graduate Scholarships - Doctoral
Group Travel to Attend the International Conference on Spectra Line Shapes; Torum, Poland; July 25-29, 1988 (Physics)
团体旅行参加国际谱线形状会议;
- 批准号:
8813276 - 财政年份:1988
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Functional Group Analysis of Infrared Spectra Using Auditory Pattern Recognition
使用听觉模式识别进行红外光谱的官能团分析
- 批准号:
8722944 - 财政年份:1988
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Microwave, Raman, Far Infrared, & Nmr Spectra & Structure OfSeveral Organophosphorus, Boron-Phosphorus, Boron-Nitrogen, Organoborane, Organogallium, & Gallium-Group Va
微波、拉曼、远红外、
- 批准号:
7708310 - 财政年份:1977
- 资助金额:
$ 34.3万 - 项目类别:
Continuing Grant
Far Infrared and Raman Spectra of Some Metallic Molecules of Group IVA Elements and Several Molecular Crystals
部分IVA族元素金属分子及几种分子晶体的远红外和拉曼光谱
- 批准号:
7035055 - 财政年份:1970
- 资助金额:
$ 34.3万 - 项目类别:
Far Infrared Spectra of Some Coordination Compounds of the Group VIII B Metals and Organo-Metallic Molecules of Group IV A
一些VIII B族金属配位化合物和IV A族有机金属分子的远红外光谱
- 批准号:
64P2828 - 财政年份:1964
- 资助金额:
$ 34.3万 - 项目类别: