Nonlinear Partial Differential Equations in Continuum Mechanics
连续介质力学中的非线性偏微分方程
基本信息
- 批准号:9971978
- 负责人:
- 金额:$ 8.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support research on nonlinear evolution partial differentialequations arising from continuum mechanics. Examples include the Euler and Navier-Stokes equations for compressible and incompressible inviscid and viscous fluids, the equations of electro-magneto field dynamics for electrically conducting compressible viscous fluids, the equations of elasticity, nonlinear Boltzmann type equations in kinetic theory of rarefied gases, and equations for combustion, multiphase flows, and fluids with chemical reactions.The main objective is to gain better qualitative and quantitative understanding of the behavior of solutions, using mathematically rigorous analysis and numerical simulations. The focus will be on understanding the effects of small scale dissipations andrelaxations on the large scale fluid motions; development of singularitiesand their stuctures from smooth flows; nonlinear stability or instability and interactions for basic linear and nonlinear waves; design and analysis ofhigh resolution numerical methods for large scale calculations of discontinous flows;fluid-dynamic limit problems for various kinetic models; and problems in multi-spacedimensions and in thermo-nonequilibrium. One of the main ideas is to overcome the difficulties that are encountered at the macroscopic level bydesigning and analyzing approximate models which are physically more fundamental and mathematically tractable. Many interesting phenomena in the mechanics of continua can be described by mathematical models that involve nonlinear partial differential equations. A better understanding of these models has important applications in many sciences such as mechanics, turbulence theory, geophysics, meteorology, aeronautics, chemical engineering, etc. This award will support work on these fundamental models.The goal is to gain better qualitative understanding and to improve the foundationsfor effective and accurate numerical simulations.
该奖项将支持研究非线性演化偏微分方程所产生的连续介质力学。 例子包括可压缩和不可压缩的无粘和粘性流体的欧拉和纳维尔-斯托克斯方程,导电可压缩粘性流体的电磁场动力学方程,弹性方程,稀薄气体动力学理论中的非线性玻尔兹曼方程,以及燃烧、多相流、和具有化学反应的流体。主要目标是使用数学上严格的分析和数值模拟,更好地定性和定量地了解溶液的行为。 重点是了解小尺度耗散和驰豫对大尺度流体运动的影响;光滑流中奇异性及其结构的发展;基本线性和非线性波的非线性稳定性或不稳定性以及相互作用;设计和分析用于大规模计算的高分辨率数值方法不连续流;各种动力学模型的流体动力学极限问题;以及多维空间和热不平衡问题。 主要思想之一是通过设计和分析物理上更基本和数学上更易处理的近似模型来克服在宏观层面上遇到的困难。 连续介质力学中许多有趣的现象都可以用包含非线性偏微分方程的数学模型来描述。更好地理解这些模型在许多科学中有重要的应用,如力学,湍流理论,物理学,气象学,航空学,化学工程等。该奖项将支持这些基础模型的工作。目标是获得更好的定性理解,并提高有效和准确的数值模拟的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhouping Xin其他文献
Massera's theorems for almost periodic solutions of functional differential equations
函数微分方程的几乎周期解的马塞拉定理
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Feimin Huang;Akitaka Matsumura;Zhouping Xin;Satoru Murakami - 通讯作者:
Satoru Murakami
On 3D Lagrangian Navier–Stokes α Model with a Class of Vorticity-Slip Boundary Conditions
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.3
- 作者:
Yuelong Xiao;Zhouping Xin; - 通讯作者:
On global smooth solutions to the 2D isentropic and irrotational Chaplygin gases with short pulse data
具有短脉冲数据的二维等熵和无旋 Chaplygin 气体的全局光滑解
- DOI:
10.1016/j.aim.2025.110362 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:1.500
- 作者:
Bingbing Ding;Zhouping Xin;Huicheng Yin - 通讯作者:
Huicheng Yin
Incompressible impinging jet flow with gravity
- DOI:
https://doi.org/10.1007/s00526-023-02448-z - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Jianfeng Cheng;Lili Du;Zhouping Xin - 通讯作者:
Zhouping Xin
Low Mach number limit for the full magnetohydrodynamic equations with general initial data
具有一般初始数据的完整磁流体动力学方程的低马赫数限制
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.7
- 作者:
Song Jiang;Qiangchang Ju;Fucai Li;Zhouping Xin - 通讯作者:
Zhouping Xin
Zhouping Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhouping Xin', 18)}}的其他基金
Mathematical Sciences: Nonlinear Partial Differential Equations in Continuum Mechanics
数学科学:连续介质力学中的非线性偏微分方程
- 批准号:
9600137 - 财政年份:1996
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations in Fluid Dynamics and Mechanics
数学科学:流体动力学和力学中的非线性偏微分方程
- 批准号:
9303887 - 财政年份:1993
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations in Fluid Dynamics and Mechanics
数学科学:流体动力学和力学中的非线性偏微分方程
- 批准号:
9002286 - 财政年份:1990
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant