Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
基本信息
- 批准号:2307610
- 负责人:
- 金额:$ 16.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Statistical uncertainty plays a significant role in a diverse range of models for complicated dynamic phenomena, leading to wild, stochastic behavior. Such probabilistic effects are caused, for instance, by unpredictable market shifts in the global economy, or turbulent or chaotic weather patterns at the evolving front of a massive forest fire. The investigator will develop a mathematical understanding for the equations arising in these applications, while also studying the stabilizing and regularizing effects of stochastic noise, for which there is often experimental or numerical evidence. This project will generate opportunities to mentor graduate and undergraduate students by providing both professional advice and mathematical knowledge related to the project. Dynamical random behavior under various complex influences is often described by nonlinear stochastic partial differential equations. Such equations cannot be solved through the superposition of simple formulae and are therefore not yet well-understood mathematically. The project will draw on tools from functional analysis and probability to resolve the well-posedness of nonlinear stochastic partial differential equations arising in competitive large population dynamics and in stochastically forced interface evolutions. The effects of stochasticity will be further analyzed by studying the long-time behavior of solutions, probabilistic averaging and regularizing phenomena, and stochastic selection principles for models with a small level of background noise. The material influence of stochasticity indicates that the statistical fluctuations in experimental data cannot be completely ignored, thereby justifying the technical study of those stochastic partial differential equations involved in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计不确定性在各种复杂动力学现象的模型中起着重要作用,导致狂野的随机行为。这种概率效应是由全球经济中不可预测的市场变化或大规模森林火灾前沿的动荡或混乱的天气模式造成的。研究人员将对这些应用中出现的方程进行数学理解,同时还将研究随机噪声的稳定和正则化效应,这些效应通常有实验或数值证据。该项目将通过提供与项目相关的专业建议和数学知识,为研究生和本科生提供指导机会。在各种复杂影响下的动力学随机行为通常用非线性随机偏微分方程来描述。这些方程不能通过简单公式的叠加来求解,因此在数学上还没有得到很好的理解。该项目将利用泛函分析和概率的工具来解决竞争性大种群动力学和随机强迫界面演化中产生的非线性随机偏微分方程的适定性。随机性的影响将通过研究解决方案的长期行为,概率平均和正则化现象,以及具有小背景噪声水平的模型的随机选择原则来进一步分析。随机性的实质性影响表明,实验数据中的统计波动不能完全忽略,从而证明了对该项目中涉及的随机偏微分方程进行技术研究的合理性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Seeger其他文献
The Neumann problem for fully nonlinear SPDE
全非线性 SPDE 的诺伊曼问题
- DOI:
10.1214/23-aap2001 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Paul Gassiat;Benjamin Seeger - 通讯作者:
Benjamin Seeger
Correction: a comparison principle for semilinear Hamilton–Jacobi–Bellman equations in the Wasserstein space
- DOI:
10.1007/s00526-024-02781-x - 发表时间:
2024-07-16 - 期刊:
- 影响因子:2.000
- 作者:
Samuel Daudin;Benjamin Seeger - 通讯作者:
Benjamin Seeger
Benjamin Seeger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Seeger', 18)}}的其他基金
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
- 批准号:
2012414 - 财政年份:2020
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
General theories on nonlinear stochastic partial differential equations with renormalizations
具有重整化的非线性随机偏微分方程的一般理论
- 批准号:
19K14556 - 财政年份:2019
- 资助金额:
$ 16.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1927258 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1815873 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
On numerical approximations of high-dimensional nonlinear parabolic partial differential equations and of backward stochastic differential equations
高维非线性抛物型偏微分方程和倒向随机微分方程的数值逼近
- 批准号:
381158774 - 财政年份:2017
- 资助金额:
$ 16.94万 - 项目类别:
Research Grants
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
- 批准号:
1939627 - 财政年份:2017
- 资助金额:
$ 16.94万 - 项目类别:
Studentship
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
- 批准号:
1616450 - 财政年份:2016
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
- 批准号:
1733909 - 财政年份:2016
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
- 批准号:
1616981 - 财政年份:2016
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
- 批准号:
1313272 - 财政年份:2013
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant