Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
基本信息
- 批准号:9971975
- 负责人:
- 金额:$ 20.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-9974395Principal Investigator: Andrew SolowAs part of the activities in 1999 marking the end of Raoul Bott'sformal teaching career at Harvard and the 35th anniversary of thestatement and proof of the Atiyah-Bott, or Woods Hole theorem, ameeting will be held October 8-10, 1999 at the Woods HoleOceanographic Institution. Shimura's original conjecture was anextension of the Lefschetz fixed point theorem for holomorphicmaps and projective varieties, announced during the 1964 SummerInstitute in Algebraic Geometry at Woods Hole. Bott and Atiyahrealized that there should be a general formula for mapspreserving any elliptic operator, or indeed any elliptic complex,and the theorem took shape. Their result and the index theoremunderpin the modern relationship between geometry, arithmetic,and physics. Raoul Bott will give an exposition of approaches forproving the theorem and generalizations that motivate currentresearch. Other lectures will cover the development ofpseudodifferential operators in index theory, which made possiblea bridge between analysis and the geometry of the problem.Examples will include non-classical ones, like the Heisenbergalgebra of pseudodifferential operators on a contactmanifold. Atiyah-Singer formulas are obtained for certainFredholm operators, and also for a class of Fourier integraloperators defined by homogeneous symplectic automorphisms of acotangent bundle. Other lectures will explain the use of anelementary Morse theory to derive natural Morse functions onmoduli spaces, connections of the Atiyah-Bott theorem withphysics, and the application of Lefschetz formula methods to theHarish-Chandra theory of group representations.Before this century there was no sharp line between physics andmathematics. The divergence between the two fields accelerated,and by the 1950's there was little in common, though physicistshad become increasingly adept at using what mathematics wasnecessary for their theories. Since the 1970's there has been anextraordinary convergence of mathematics and physics in the basictheories of space and matter. The Atiyah-Bott fixed pointtheorem, or Woods Hole theorem, is a landmark mathematical resultfrom the 1960's. This theorem has led to a great number ofapplications to problems in mathematics, and is an active fieldof research. To consider the present work and the futurepossibilities suggested by the Atiyah-Bott theorem, a meeting isplanned for the fall of 1999, in celebration of this work and thecareer of Raoul Bott. The implications of this research on theproblems common to both physics and mathematics will be explored.
AbstractAward:DMS-9974395首席研究员:安德鲁·索洛作为1999年活动的一部分,标志着拉乌尔博特在哈佛正式教学生涯的结束,以及阿蒂亚-博特定理或伍兹霍尔定理的陈述和证明35周年,会议将于1999年10月8日至10日在伍兹霍尔海洋研究所举行。志村的原始猜想是一个扩展的莱夫谢茨不动点定理的holomorphicmaps和投影品种,宣布在1964年夏季研究所代数几何在伍兹霍尔。博特和阿蒂亚意识到,应该有一个通用的公式来保存任何椭圆算子,或者任何椭圆复形,定理形成了。他们的结果和指数定理巩固了现代几何、算术和物理之间的关系。拉乌尔博特将给出一个方法forprove定理和推广,激励当前的研究博览会。其他讲座将涵盖指数理论中伪微分算子的发展,这使得问题的分析和几何之间的桥梁成为可能。例子将包括非经典的,如接触流形上伪微分算子的海森伯代数。对某些Fredholm算子和一类由正切丛的齐次辛自同构定义的Fourier积分算子,得到了Atiyah-Singer公式.其他讲座将解释使用一个基本的莫尔斯理论,以获得自然莫尔斯函数的模空间,连接的阿蒂亚-博特定理与物理,并应用莱夫谢茨公式的方法来theHarish-Chandra理论的群表示。在此之前,世纪有没有明确的界限之间的物理和数学。 这两个领域之间的分歧加速了,到了20世纪50年代,几乎没有什么共同之处,尽管物理学家们越来越善于使用他们的理论所必需的数学。 自20世纪70年代以来,在空间和物质的基本理论方面,数学和物理学出现了惊人的融合。 Atiyah-Bott不动点定理,或称伍兹霍尔定理,是20世纪60年代数学中的一个里程碑式的结果。这一定理在数学问题中有大量的应用,是一个活跃的研究领域。考虑目前的工作和未来的可能性所建议的阿蒂亚-博特定理,会议计划于1999年秋季,在庆祝这项工作和事业的拉乌尔博特。本研究对物理和数学共同问题的影响将被探讨。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafe Mazzeo其他文献
ADHDのペアレントトレーニングの評価 in 発達障害白書
发育障碍中多动症家长培训的评估白皮书
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Kazuo Akutagawa;Gilles Carron;Rafe Mazzeo;岩坂英巳 - 通讯作者:
岩坂英巳
Properly embedded minimal annuli in $$\mathbb {H}^2 \times \mathbb {R}$$
- DOI:
10.1007/s00208-019-01840-5 - 发表时间:
2019-05-27 - 期刊:
- 影响因子:1.400
- 作者:
Leonor Ferrer;Francisco Martín;Rafe Mazzeo;Magdalena Rodríguez - 通讯作者:
Magdalena Rodríguez
Holder regularity of solutions for Schrodinger operators on stratified spaces
分层空间薛定谔算子解的持有人正则性
- DOI:
10.1016/j.jfa.2015.02.003 - 发表时间:
2015 - 期刊:
- 影响因子:1.7
- 作者:
Kazuo Akutagawa;Gilles Carron;Rafe Mazzeo - 通讯作者:
Rafe Mazzeo
Curvature and uniformization
- DOI:
10.1007/bf02764082 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Rafe Mazzeo;Michael Taylor - 通讯作者:
Michael Taylor
New examples of $${\mathbb {Z}}_2$$ -harmonic 1-forms and their deformations
- DOI:
10.1007/s10711-025-00992-w - 发表时间:
2025-03-03 - 期刊:
- 影响因子:0.500
- 作者:
Andriy Haydys;Rafe Mazzeo;Ryosuke Takahashi - 通讯作者:
Ryosuke Takahashi
Rafe Mazzeo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafe Mazzeo', 18)}}的其他基金
Microlocal Methods in Geometric Analysis
几何分析中的微局部方法
- 批准号:
1608223 - 财政年份:2016
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
- 批准号:
1265187 - 财政年份:2013
- 资助金额:
$ 20.29万 - 项目类别:
Standard Grant
Applications of Geometric Microlocal Analysis
几何微局部分析的应用
- 批准号:
1105050 - 财政年份:2011
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
- 批准号:
0805529 - 财政年份:2008
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
- 批准号:
0505709 - 财政年份:2005
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Degenerate Microlocal Methods and Geometric Analysis
简并微局部方法和几何分析
- 批准号:
0204730 - 财政年份:2002
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Degenerate Microlocal Methods in Geometric Analysis
数学科学:几何分析中的简并微局域方法
- 批准号:
9626382 - 财政年份:1996
- 资助金额:
$ 20.29万 - 项目类别:
Standard Grant
Mathematical Sciences: Degenerate Microlocal Methods and Geometric Analysis
数学科学:简并微局部方法和几何分析
- 批准号:
9303236 - 财政年份:1993
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: NSF Young Investigator
数学科学:NSF 青年研究员
- 批准号:
9258274 - 财政年份:1992
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Pseudodifferential Techniques for Degenerate Elliptic Equations in Geometry
数学科学:几何中简并椭圆方程的伪微分技术
- 批准号:
9001702 - 财政年份:1990
- 资助金额:
$ 20.29万 - 项目类别:
Standard Grant
相似海外基金
Spectral and scattering theory with microlocal and semiclassical methods
使用微局域和半经典方法的光谱和散射理论
- 批准号:
21K03276 - 财政年份:2021
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microlocal Methods in Geometric Analysis
几何分析中的微局部方法
- 批准号:
1608223 - 财政年份:2016
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Microlocal and semiclassical methods in spectral and scattering theory
光谱和散射理论中的微局域和半经典方法
- 批准号:
15H03622 - 财政年份:2015
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research in inverse problems by methods of microlocal analysis and its application to practice
微局域分析方法反问题研究及其实践应用
- 批准号:
26400184 - 财政年份:2014
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:
1067924 - 财政年份:2011
- 资助金额:
$ 20.29万 - 项目类别:
Standard Grant
Study of partial differential equations and tomography by microlocal and discrete methods
通过微局部和离散方法研究偏微分方程和断层扫描
- 批准号:
20540157 - 财政年份:2008
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
- 批准号:
0805529 - 财政年份:2008
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
- 批准号:
0505709 - 财政年份:2005
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Degenerate Microlocal Methods and Geometric Analysis
简并微局部方法和几何分析
- 批准号:
0204730 - 财政年份:2002
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Analysis of non-linear singularities by microlocal methods
微局部方法的非线性奇点分析
- 批准号:
10440037 - 财政年份:1998
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




