FRG: Collaborative Research: Analysis of the Einstein Constraint Equations

FRG:合作研究:爱因斯坦约束方程的分析

基本信息

  • 批准号:
    1265187
  • 负责人:
  • 金额:
    $ 18.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1265187, 1262982, 1263431, 1263544PI: Rafe R. Mazzeo, Stanford University PI: Michael J. Holst, University of California - San Diego PI: James A. Isenberg, University of Oregon PI: David Maxell, University of AlaskaThe goal of this project is to understand the extent to which one can parametrize and construct initial data sets for the Einstein evolution equations. We plan to capitalize on the recent progress using the conformal method to obtain new existence results in the nonconstant mean curvature (non-CMC) setting, to understand the limits of these methods, and then to develop alternate techniques toward these same goals, including degree theory, a priori estimates, and gluing methods. The Lichnerowicz equation, central to the conformal method, is a semilinear elliptic equation. Due to the mixed sign of its nonlinear exponents, it is of a type not yet fully understood. The full Lichnerowicz-Choquet-Bruhat-York set of equations is a more difficult coupled system which incorporates features presenting new analytic subtleties. The ultimate aim is to provide a complete parametrization of initial data sets, particularly in the non-CMC setting, not only on compact backgrounds but also for manifolds with asymptotically Euclidean, hyperbolic or cylindrical ends, all of which are highly relevant for physical applications. In exploring new methods, we plan to use new and advanced analytical tools, as well as increasingly accurate and flexible numerical simulation techniques. Technical advances made in the course of this project should have a substantial application to many other equations of this general type which play important roles in other parts of pure and applied mathematics and mathematical physics. Einstein's gravitational field theory is a remarkably accurate mathematical model of gravitational physics, which does an excellent job of predicting and modeling gravitational phenomena at both the astrophysical and cosmological scales. It is consistent with every known gravitational observation and experiment. From the point of view of underlying mathematics, Einstein's theory involves two very distinct types of equations. The study of dynamics of gravitational fields involves the analysis of the Einstein equations as a nonlinear system of time-dependent evolution partial differential equations (PDE), while the study of initial data sets representing gravitational states involves Riemannian geometry and the study of the Einstein constraint equations as a nonlinear system of time-independent PDE.The last decade has witnessed remarkable progress in under- standing both equations. This project focuses on developing a more complete understanding of the constraint equations. The study of the Einstein equations presents a very important point of contact between mathematics and physics, one which has motivated many advances in differential geometry and PDE on the one side, and which also has provided a compelling and accurate model of the physical world, both on the astrophysical and on the cosmological scales. This project has the potential for settling significant open questions in this area.
奖项:DMS 1265187,1262982,1263431,1263544PI:Rafe R.Mazzeo,斯坦福大学Pi:Michael J.Holst,加州大学圣地亚哥分校Pi:James A.Isenberg,俄勒冈大学Pi:David Maxell,阿拉斯加大学这个项目的目标是了解一个人可以在多大程度上参数化和构造爱因斯坦演化方程的初始数据集。我们计划利用共形方法的最新进展,在非恒定平均曲率(Non-CMC)环境下获得新的存在性结果,了解这些方法的局限性,然后为这些相同的目标开发替代技术,包括次数理论、先验估计和粘合方法。保角方法的核心部分是一个半线性椭圆型方程。由于其非线性指数的混合符号,它是一种尚未完全理解的类型。完整的LICHNEROWICZ-CHOQUET-BRUHAT-YOKO方程组是一个更困难的耦合系统,它包含了呈现新的分析微妙的特征。其最终目的是提供初始数据集的完整参数化,特别是在非CMC环境下,不仅在紧凑的背景上,而且对于具有渐近欧几里得、双曲或圆柱形末端的流形,所有这些都与物理应用高度相关。在探索新的方法时,我们计划使用新的和先进的分析工具,以及越来越准确和灵活的数值模拟技术。在这个项目的过程中取得的技术进步应该对许多其他的这种一般类型的方程有实质性的应用,这些方程在纯数学和应用数学以及数学物理的其他部分中扮演着重要的角色。爱因斯坦的引力场理论是一个非常精确的引力物理数学模型,它在预测和模拟天体物理和宇宙尺度上的引力现象方面做得很好。这与所有已知的引力观测和实验是一致的。从基本数学的观点来看,爱因斯坦的理论涉及两种截然不同的方程。引力场动力学的研究包括将爱因斯坦方程分析为含时演化偏微分方程组(PDE)的非线性系统,而表示引力态的初始数据集的研究涉及黎曼几何和爱因斯坦约束方程作为含时偏微分方程组的非线性系统的研究。这个项目的重点是发展对约束方程的更完整的理解。对爱因斯坦方程的研究是数学和物理之间的一个非常重要的接触点,一方面推动了微分几何和偏微分方程组的许多进步,另一方面也提供了一个令人信服的和准确的物理世界模型,无论是在天体物理尺度上还是在宇宙尺度上。该项目有可能解决该领域的重大悬而未决的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafe Mazzeo其他文献

ADHDのペアレントトレーニングの評価 in 発達障害白書
发育障碍中多动症家长培训的评估白皮书
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuo Akutagawa;Gilles Carron;Rafe Mazzeo;岩坂英巳
  • 通讯作者:
    岩坂英巳
Properly embedded minimal annuli in $$\mathbb {H}^2 \times \mathbb {R}$$
  • DOI:
    10.1007/s00208-019-01840-5
  • 发表时间:
    2019-05-27
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Leonor Ferrer;Francisco Martín;Rafe Mazzeo;Magdalena Rodríguez
  • 通讯作者:
    Magdalena Rodríguez
Holder regularity of solutions for Schrodinger operators on stratified spaces
分层空间薛定谔算子解的持有人正则性
  • DOI:
    10.1016/j.jfa.2015.02.003
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Kazuo Akutagawa;Gilles Carron;Rafe Mazzeo
  • 通讯作者:
    Rafe Mazzeo
Curvature and uniformization
  • DOI:
    10.1007/bf02764082
  • 发表时间:
    2002-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Rafe Mazzeo;Michael Taylor
  • 通讯作者:
    Michael Taylor
New examples of $${\mathbb {Z}}_2$$ -harmonic 1-forms and their deformations
  • DOI:
    10.1007/s10711-025-00992-w
  • 发表时间:
    2025-03-03
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Andriy Haydys;Rafe Mazzeo;Ryosuke Takahashi
  • 通讯作者:
    Ryosuke Takahashi

Rafe Mazzeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafe Mazzeo', 18)}}的其他基金

Microlocal Methods in Geometric Analysis
几何分析中的微局部方法
  • 批准号:
    1608223
  • 财政年份:
    2016
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Applications of Geometric Microlocal Analysis
几何微局部分析的应用
  • 批准号:
    1105050
  • 财政年份:
    2011
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
  • 批准号:
    0805529
  • 财政年份:
    2008
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
  • 批准号:
    0505709
  • 财政年份:
    2005
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Degenerate Microlocal Methods and Geometric Analysis
简并微局部方法和几何分析
  • 批准号:
    0204730
  • 财政年份:
    2002
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Degenerate Microlocal Methods in Geometric Analysis
几何分析中的简并微局部方法
  • 批准号:
    9971975
  • 财政年份:
    1999
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Degenerate Microlocal Methods in Geometric Analysis
数学科学:几何分析中的简并微局域方法
  • 批准号:
    9626382
  • 财政年份:
    1996
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Degenerate Microlocal Methods and Geometric Analysis
数学科学:简并微局部方法和几何分析
  • 批准号:
    9303236
  • 财政年份:
    1993
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: NSF Young Investigator
数学科学:NSF 青年研究员
  • 批准号:
    9258274
  • 财政年份:
    1992
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Pseudodifferential Techniques for Degenerate Elliptic Equations in Geometry
数学科学:几何中简并椭圆方程的伪微分技术
  • 批准号:
    9001702
  • 财政年份:
    1990
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了